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Chapter 1

Topological Groups

1.1 Invariant Measures

Remark.Many of the fundamental results on groups and their represenataions can be given in the
general context of topological groups, without recourse to differential theory. This is, however, a
difficult approach. Essentially the only tools available in the theory of topological groups are measure
theory andC∗-algebras. This makes the landscape somewhat stark and alien. But topological group
theory provides an important application of these tools, and we will begin here.

Definition. A topological group is a group which is also a topological space, such that the group
operationx, y 7→ xy−1 is continuous.

Definition. Givena ∈ G, define the left translation map

τa : G −→ G

τa : g 7→ ag

As a consequence of the continuity of the group operations, left translation is a homeomorphism.

Definition. Let x, y ∈ G, and letU be an open neighbourhood of the identity. We say thatx, y are
U -close ifx ∈ yU . In this way, open nbhds. of the identity take the place of “δ” in ε, δ arguments,
and the topological group effectively masquerades as a metric space.

Let H be a subgroup ofG, and letG/H be the set of left cosets{xH : x ∈ G}. Let π be the
canonical map

π : G −→ G/H.

EndowG/H with the topology such thatW ⊂ G/H is open if and only ifπ−1(W ) is open inG. In
generalG/H is not Hausdorff. However, ifH is closed thenG/H will be Hausdorff. The converse
is also true.

1.1. Theorem (Open Projection).π is an open mapping (maps open sets to open sets).

Proof. LetW ⊂ G/H be open;W = π(π−1(W )) andπ−1(W ) is open by assumption. Conversely
let V ⊂ G be open. Thenπ−1(π(V )) = V H is open inG. Soπ(V ) is open.

6



CHAPTER 1. TOPOLOGICAL GROUPS 7

Remark.Recall that a topological space is called locally compact if every point has a compact neigh-
bourhood. Further recall that a Borelσ-algebra is theσ-algebra generated by the open sets of a topo-
logical space. Now we come to the single most important result in the theory of topological groups,
which is the existence and uniqueness of a translation invariant measure.

Definition. Define a Haar functional to be a positive non-zero functionalλ on C0(G), which is
left-invariant

λ(τgf) = λ(f), ∀f ∈ C0(G).

Definition. A positive measureµ on a locally compact space is calledσ-regular when the following
hold.

• If A is a Borel set, thenµ(A) = inf µ(V ), A ⊂ V .

• If K is compact, thenµ(K) <∞.

• If A is Borel and it is a countable union of sets of finite measure [σ-finite], thenµ(A) =
supµ(K), withK compact,K ⊂ A.

Definition. Define a Haar measure on a locally compact groupG to be a positiveσ-regular measure
on theσ-algebra of Borel sets which is non-zero on any non-empty open set, and which is left-
invariant,

µ(gA) = µ(A), A measurable, A ⊂ G, g ∈ G.

Remark.To prove uniqueness of Haar measure, it is useful to reduce the problem fromG to a certain
distinguished subgroup ofG. The following lemma accomplishes this reduction.

1.2. Lemma (Distinguished Subgroup).Let G be a locally compact group. Then there exists a
subgroupH ⊂ G which is both open and closed, and which is a countable union of compact sets.

Proof. Let K be a compact neighbourhood of1 ∈ G with K = K−1. DefineKn = K · K · · ·K
n-times. These are compact nbhds. of 1, and they form an increasing sequence· · · ⊆ Kn ⊆ Kn+1 ⊆
· · ·. LetH = K∞ =

⋃
n>0K

n. By construction thenH is a countable union of compact sets. By
constructionH is a subgroup as well.

Let x ∈ H, sox ∈ Kn for somen. ThereforexK ⊂ Kn+1 ⊂ H, and so a neighbourhood ofx is
contained inH. ThereforeH is open.

NowH is the complement of a union of all cosets which are not identically equal toH. But all cosets
of H are open, soH is the complement of an open set, therefore closed.

Remark.The distinguished subgroup that is constructed here should be thought of as “all elements
which can be reached from a neighbourhood of the identity with countably many group operations.”
Because it is constructed from a countable number of compact sets, it will have simple measure
theoretic properties. On the other hand, it is large enough that we can work on it instead of on all of
G.

1.3. Lemma. LetH be theσ-finite subgroup constructed above. Uniqueness of Haar measure onH
implies uniqueness onG, up to an overall constant of normalization.
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Proof. Use the local compactness ofG to writeG as a union of a countable number of translates of
H,

G =
⋃
i∈I

xiH.

Suppose thatµ is a Haar measure onG. By the left-translation invariance ofµ, the xiH are all
equivalent as measure spaces. EachxiH is certainlyσ-finite, by construction. IfA ⊂ G is an
arbitrary measurable set then we can write

A =
⋃
i

Ai, Ai ⊂ xiH, Ai
⋂

Aj = ∅ i 6= j.

Now suppose that we have proven the uniqueness of Haar measure onH. Then compute as follows.

µ1(
⋃

Ai) =
∑

µ1(Ai)

=
∑

µ1(x−1
i Ai ⊂ H)

=
∑

cµ2(x−1
i Ai)

= cµ2(
⋃

Ai).

This demonstrates that the measures are unique up to an overall normalization, which is what we
wished to show.

Remark.We will associate the measureµ with the functionaldµ in the usual way. That this is a
bijective correspondence is not difficult [Lan83, p.429]. It is simplest to prove the result using the
associated functionals rather than the measures.

1.4. Theorem (Haar Uniqueness).Let µ1 and µ2 be Haar measures onG. Then there exists a
numberc > 0 such thatµ1(·) = cµ2(·).

Proof. As shown above, it suffices to prove the result forσ-finite G. Therefore assume thatG is
σ-finite. This allows us to use the Fubini theorem freely. Let

r(f) =

∫
f dµ1∫
f dµ2

for non-zero positivef ∈ C0(G). Let ψ(x) be a function supported in a neighbourhood of1 ∈ G,
and leth(x) = Nψ(x)ψ(x−1). If ψ is chosen positive and the constantN is chosen appropriately,h
will satisfy

h(x) = h(x−1),

∫
h dµ2 = 1.

Let the support be chosen inside a compact neighbourhoodK of 1 ∈ G. Now compute, using the



CHAPTER 1. TOPOLOGICAL GROUPS 9

left-invariance and the symmetry ofh,∫
hdµ1

∫
fdµ2 −

∫
hdµ2

∫
fdµ1 =

∫∫
[h(x)f(y)− h(y)f(x)] dµ1(x)dµ2(y)

=

∫∫ [
h(y−1x)f(y)− h(y)f(yx)

]
dµ1(x)dµ2(y)

=

∫∫ [
h(x−1y)f(y)− h(y)f(yx)

]
dµ1(x)dµ2(y)

=

∫∫
h(x−1xy)f(xy)dµ1(x)dµ2(xy)−

∫∫
h(y)f(yx)dµ1(x)dµ2(y)

=

∫∫
h(y) [f(xy)− f(yx)] dµ1(x)dµ2(y).

ChooseK small enough that, for a givenε > 0,

|f(xy)− f(yx)| < ε ∀x ∈ G, y ∈ K.

Let S = supp (f), which is compact by hypothesis. Then the functionx 7→ f(xy) − f(yx) has
support in a compact set of boundedµ1-measure,SK−1 ∪K−1S. By positivity ofh,∣∣∣∣∫ hdµ1

∫
fdµ2 −

∫
hdµ2

∫
fdµ1

∣∣∣∣ ≤ εCf

∫
hdµ2 = εCf ,

whereCf is a constant depending only onf . Therefore∣∣∣∣∫ hdµ1 −
∫
hdµ2

∫
fdµ1∫
fdµ2

∣∣∣∣ ≤ εCf ,

Therefore|
∫
hdµ1 − r(f)| ≤ εCf , andlimK→{1}

∫
hKdµ1 = r(f). Thereforer(f) is independent

of f , and thereforedµ1(·) = cdµ2(·).
Remark.Unfortunately, the existence proof for Haar measure is not particularly useful. It proceeds
by first constructing an approximately additive left-invariant functional for each function supported
near the identity inG. Then the set of such functions is topologized and a compactness property is
used to assert the existence of a strictly additive functional. No constructive formulae appear. See
[Lan83, p.431] for the details.

Remark.It is a theorem of Weil that local compactness ofG is necessary as well as sufficientfor the
existence of a non-zero left-invariant measure.

Remark.In all of the above constructions, “left-invariant” can be replaced with “right-invariant”.
However, the relation between the two views is not absolutely trivial.

1.5. Theorem (Modular Function). Given a locally compact groupG, there exists a group homo-
morphism∆G : G −→ R

∗ such that, ifµL andµR are left- and right-invariant measures, then

• dµR(xy) = ∆G(x)dµR(y)

• dµL(xy) = ∆G(y)−1dµL(y)

• dµR(x) = c∆G(x)dµL(x)
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• dµL(x−1) = ∆G(x)dµL(x)

• dµR(x−1) = ∆G(x)−1dµR(x)

Furthermore, we have the explicit formula

∆G(x) =

∫
f(x−1y)dµR(y)∫
f(y)dµR(y)

.

Proof. All are explicit computations. The only technical fact is the continuity of∆G, which follows
from the explicit formula. Some of the computations are as follows. LetdµL be a left Haar measure.
Define a second one by

dµ
(z)
L (x) = dµL(xz), z ∈ G.

Clearly dµ(z)
L is also a left Haar measure. By the uniqueness theorem we must havedµ

(z)
L =

∆G(z)−1dµL, where∆G(z) is a number depending only onz. Applying the definition twice gives

dµL(xyz) = ∆G(y)−1∆G(z)−1dµL(x)

= ∆G(yz)−1dµL(x),

→ ∆G(xy) = ∆G(x)∆G(y).

Similarly

dµL(xyy−1) = dµL(x) = ∆G(y)−1∆G(y−1)−1dµL(x),

→ ∆G(y−1) = ∆G(y)−1.

Therefore∆G : G −→ R is a group homomorphism. Note also that if we define a measuredµ(x) =
∆G(x)dµL(x), then

dµ(xy) = ∆G(xy)dµL(xy)

= ∆G(xy)∆G(y)−1dµL(x)

= ∆G(x)dµL(x)

= dµ(x).

Thereforedµ(x) is right-invariant,dµR(x) = c∆G(x)dµL(x). So the function∆G(x) relates left-
invariant and right-invariant measures. It is an important invariant of the groupG.

Definition. DefineG to be unimodular when∆G(x) = 1. Note that this implies the existence of a
two-sided-invariant measure.

Remark.We can now exhibit some Haar measures as examples. In general this is the way that we
will come about Haar measures; they are usually just guessed, and the uniqueness theorem assumes
a central role.

• LetG = R considered as an additive abelian group. Then Lebesgue measure is a Haar measure.
The group is abelian, therefore it is trivially unimodular.
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• LetG = SL2 (C). Represent the matrices as

g =

(
α β
γ δ

)
, αδ − βγ = 1.

Then the following measure is left- and right-invariant,

dµ(g) = |δ|−2dβdβdγdγdδdδ.

• Let G = SL2 (R). Represent the matrices as above. Then the following measure is left- and
right-invariant,

dµ(g) =
dα dβ dγ dδ

(αδ − βγ)−2
.

• LetG = GLn (R). Represent the matrices as

M =


m11 · · · m1n

· ·
· ·

mn1 · · · mnn

 .

Then the following measure is left- and right-invariant,

dµ(M) =
dm11dm12 · · · dmnn

| det M |n
.

• LetG = R
∗, the multiplicative group of positive reals. Then the following measure is left- and

right-invariant,

dµ = dx/x.

• Let G = Affine (R) be the group of affine maps of the line,x 7→ ax + b, a ∈ R∗, b ∈ R.
Consider the measure

dµR =
da

a
db,

where elements ofG are represented asg = (a, b). Then the right-action is given by

ρ(a0,b0) : (a, b) 7→ (a′, b′) = (aa0, ab0 + b).

So the measure is right-invariant. However, the group is not unimodular. We have

dµL =
da

a2
db, ∆G(a, b) = a.

1.6. Lemma (Compact Unimodularity). Let G be a compact topological group. ThenG is uni-
modular.
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Proof. By the previous explicit formula,∆G : G −→ R
∗ is a continuous group homomorphism.

Being a continuous map, it maps compact sets into compact sets. Therefore the image ofG in R∗ is
compact. It is also a subgroup ofR∗. However, it is easy to see that the only compact subgroup of
R
∗ is {1}. Therefore∆G = 1.

Definition. We will now consider topological spaces which have degrees of symmetry described by
topological groups. These are spaces which admit actions by such a group. LetX be a topological
space. Define aG-action onX to be a map

α : G×X −→ X

such that

• α is continuous.

• α(g1g2, x) = α(g1, α(g2, x))

• α(1, x) = x.

When a distinction is necessary, such a map will be called a leftG-action onX. Defineα to act
transitively if for allx, y ∈ X there existsg ∈ G such thatα(g, x) = y. Define the stability group of
x ∈ X to be{g ∈ G : α(g, x) = x}.

1.2 Coset Spaces

Remark.We have already considered the cosetsG/H for closed subgroupsH. These were seen to
be Hausdorff spaces, and they were topologized such that the canonical projection was continuous.
These are clearly topological spaces which admit aG-action. We will now show that these are the
only examples.

1.7. Theorem. LetG be a locally compact topological group acting transitively on a locally compact
spaceX, by α. Let x ∈ X be any point and letH be the stability group ofx. ThenG/H is
homeomorphic toX, by the mappinggH 7→ α(g, x).

Proof. H is closed because it is the inverse image of a closed set under the mapφ : g 7→ α(g, x),
which is continuous by assumption.

Let V ⊂ G be open, withg ∈ V . Let U be a neighbourhood of1 ∈ G which is symmetric
(U−1 = U ), and which is sufficiently small thatgU2 ⊂ V .

G has a countable base, so there exists a sequence{gn} such thatG = ∪n(gnU). Let Xn =
α(gnU, x). Since the action is transitive,X = ∪nXn; eachXn is closed. By the Baire category
theorem, one of theXn must have a non-empty interior, sayXN .

Let u ∈ G be such thatα(u, x) ∈ XN is a guaranteed interior point. Thenα(u−1U, x) ⊂ α(U2, x).
Soα(g, x) has an interior, which is covered by the interior ofV , an so it is open. Our hypothesis was
thatV was open. Thereforeφ is an open mapping. Soφ is a homeomorphism.

Remark.The above constructions can be carried out equally for right coset spaces and right-actions.
We use the notationH\G for right coset spaces.
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1.8. Theorem. There exists an invariant measureµ onG/H if and only if∆G(h) = ∆H(h) for all
h ∈ H. This measure satisfies∫

G

f(g)dg =

∫
G/H

dµ(gH)

[∫
H

f(hg)dh

]
.

Proof. See [BR77, p.130][Loo60].

Remark.In a precise sense, topological groups which look the same locally are all derived from a
universal group which has a simple global structure.

1.9. Theorem (Universal Covering).LetG1 be arcwise-connected, locally connected, and locally
simply-connected. Then there exists a unique simply-connected groupG̃ with a discretenormal
subgroupN1 such thatG1 ' G̃/N1. Furthermore, ifG2 is another such group, which is locally
isomorphic toG1, then there is another discrete normal subgroupN2 such thatG2 ' G̃/N2, for the
sameG̃.

Proof. Most of the statements are true in the general context of covering spaces. Uniqueness of the
universal covering is simple because no simply-connected space has a proper covering and any two
coverings have a common covering. See, for example [Ger85]. The specific group-theoretical results
are more difficult. See [Pon66].

Definition. The groupG̃ is called the universal covering group ofG1, G2.



Chapter 2

Extensions and Group Cohomology

Definition. LetG0 be a normal subgroup ofG. Then we have the following exact sequence

1→ G0
i→ G

π→ G/G0 → 1.

LetG1 = G/G0. Then we say that this situation gives an extension ofG1 byG0. Given two groups
G0, G1, it is interesting to ask when such extensions exist.

Definition. The simplest type of extension is the semi-direct product. Since this is a familiar con-
struction it is a good place to start. LetG0, G1 be groups. Letψ : G1 −→ Aut (G0) be a represen-
tation ofG1 on Aut (G0). LetG = G1 × G0 be the Cartesian product ofG0 andG1. We define a
group operation onG by

(g1, g0) · (g′1, g′0) = (g1g
′
1, [ψ

−1(g′1)g0]g′0).

Associativity is the only hard part. It is a five or six line computation. Clearly the injections

i0 : G0 −→ G

i0 : g0 7→ (1, g0)

i1 : G1 −→ G

i1 : g1 7→ (1, g1)

are group homomorphisms. So we have an extension. This extension is called the semi-direct product
of G0 byG1 with ψ; we write

G = G0 oψ G1.

Remark.Examples of semi-direct products are easy to come by. The simplest example is probably
the affine motions of the line, a group we have seen before,

Affine (R) = Ro R
∗

(a, b) ≡ x→ ax+ b

(a, b)(a′, b′) = (aa′, ab′ + b).

14
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Remark.The following lemma shows how more general extensions can be constructed.

2.1. Lemma (General Extensions).Let two maps be given,

χ : G1 ×G1 −→ G0,

ψ : G1 −→ Aut (G0) ,

and require that they satisfy the conditions

• ψ(g1)ψ(g′1) = ψ(g1g
′
1)p(χ(g1, g

′
1))

• χ(g1g
′
1, g
′′
1)ψ(g′′1)−1 = χ(g1, g

′
1g
′′
1)χ(g′1, g

′′
1),

werep : G0 −→ Aut (G0) is the representation ofG0 on itself by conjugation, sop(G0) = Inn (G0),
the inner automorphisms ofG0. When such maps exist satisfying these properties we have an exten-
sion ofG1 byG0. Note that in generalψ : G1 −→ Aut (G0) is not required to be a representation.

Proof. The conditions for an extension can be verified from the conditions on the given maps.

Definition. Whenψ : G1 −→ Aut (G0) is a homomorphism, we say that the situation describes
a central extension. In this casep(χ(g1, g

′
1)) = 1, thereforeχ(g1, g

′
1)−1g0χ(g1, g

′
1) = g0 for all

g1, g
′
1, g0. Thereforeχ(G1 ×G1) ⊆ Z (G0), the center ofG0.

Remark.In general there may exist no such mapsχ, ψ, and then no extensions ofG1 by G0 will
exist. When extensions exist they may not be unique.

Definition. LetG act on an abelian groupA. Define a mapc to be ann-dimensional cochain if

c : G× · · · ×G −→ A

c : (g0, . . . , gn) 7→ c(g0, . . . , gn)

(gg0, . . . , ggn) = gc(g0, . . . , gn).

Definition. Define a coboundary operator by

dc(g0, . . . , gn+1) =
n+1∑
i=0

(−1)ic(g0, . . . , ĝi, . . . , gn+1).

Definition. A cochainc is called a coboundary ifc = db. It is called a cocycle ifdc = 0.

2.2. Lemma. The set ofn-dimensional cochains forms a groupCn(G,A). The set ofn-dimensional
cocycles forms a groupZn(G,A), containing then-dimensional coboundaries as a subgroup,Bn(G,A) ≤
Zn(G,A).

Definition. Define then-dimensional cohomology group to be the factor group

Hn (G,A) = Zn(G,A)/Bn(G,A).

WhenA has the extra structure of a ring or algebra, thenHn (G,A) is a also a (graded) ring or
algebra.
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Remark.Rather than deal withc(g0, . . . , gn) explicitly, it is easier to compute with the representation
c̃(g1, . . . , gn) = c(1, g1, g1g2, . . . , g1g2 · · · gn). Then

d̃c(h) = hc̃− c̃
d̃c(h1, h2) = h1c̃(h2)− c̃(h1h2) + c̃(h1),

d̃c(h1, h2, h3) = h1c̃(h2, h3)− c̃(h1h2, h3) + c̃(h1, h2h3)− c̃(h1, h2)

. . . .

Remark.Now return to the discussion of general extensions. Given two groups, it is natural to ask
when extensions of one by the other exist and to classify the extensions when they exist. In general
there are obstructions to the existence of extensions. The following theorem characterizes those
obstructions and the extensions.

2.3. Theorem. If H3 (G1,Z (G0)) = 0, then there exist extensions ofG1 byG0. Equivalence classes
of central extensions ofG1 byG0 are in one-to-one correspondence with elements ofH2 (G1,Z (G0)).

Proof. Consider the mapψ. The first required property states that

ψ(g1)ψ((g′1) = ψ(g1g
′
1) · p(χ(g1, g

′
1)).

Thereforeψ(g1)ψ(g′1) andψ(g1g
′
1) differ by an element ofIm p = Inn (G0). So they define the

same element of the factor spaceAut (G0)/Inn (G0). The conjugation mapp : G0 −→ G0 is an
isomorphismG0/ker p ' Inn (G0). The kernel is just the center ofG0, soInn (G0) ' G0/Z (G0).
Thereforeχ(g1, g

′
1) is defined as an element ofG0/Z (G0), i.e. defined up to an element ofZ (G0).

In general the second required property can fail to hold. However, the two sides can differ by at most
an element ofZ (G0), call it ω(g1, g

′
1, g
′′
1) ∈ Z (G0). This can be seen by applyingp to both sides.

Soω is a mapω : G1 ×G1 ×G1 −→ Z (G0).

Furthermore, we have freedom in changingχ as long as we do not disturb the second property.
Multiply that property by someβ : G1 ×G1 −→ Z (G0), and this altersω by a factor

β(g1g
′
1, g
′′
1)β(g1, g

′
1)β(g′1, g

′′
1)−1β(g1, g

′
1g
′′
1)−1.

Finally, the mapω must satisfy

ω(g1, g2, g3)−1ω(g1, g2, g3g4)ω(g1, g2g3, g4)−1 = ω(g2, g3, g4)ω(g1g2, g3, g4)−1.

These statements are more transparent in the additive notation. Trivial changes inω are given by

ω → ω + β(g1g2, g3) + β(g1, g2)− β(g2, g3)− β(g1, g2g3),

and the constraint onω is

−ω(g1, g2, g3) + ω(g1, g2, g3g4)− ω(g1, g2g3, g4)− ω(g2, g3, g4) + ω(g1g2, g3, g4) = 0.

This meansdω = 0, whereω : G1 × G1 × G1 −→ Z (G0) is regarded as a 3-cochain, i.e. as a
representation of a 3-cochain in the form of a function of one less argument (c → c̃). The trivial
changes inω are given byω → ω + dβ.

Therefore, nontrivial obstructions to the second property are elements ofH3 (G1,Z (G0)). Nontrivial
changes of extension are elements ofH2 (G1,Z (G0)).



Chapter 3

Representations of Topological Groups

3.1 Introduction

Definition. Let G be a locally compact separable topological group. LetH be a separable Hilbert
space, and letρ be a homomorphism ofG into the set of bounded linear operators onH which is
continuous for the strong operator topology.

ρ : G −→ B(H)

ρ(xy) = ρ(x)ρ(y).

Thenρ is called a representation ofG onH.

Definition. A unitary representation ofG is a representation into the set of unitary operators onH.

Definition. LetH = L2 (G;µ). The left regular representation is defined by

(ρaf)(g) = f(a−1g), f ∈ H.

By invariance ofµ eachρa is isometric and has domain equal toH. So this representation is unitary.
Strong continuity is easily proven by approximatingf ∈ H byC0(G) functions.

Definition. Let ρ andρ′ be representations ofG in H andH′. Define an intertwining operator to be
a bounded linear mapV : H −→ H′ such that

V ρg = ρ′gV, ∀g ∈ G.

Denote the set of intertwining operators forρ, ρ′ by HomG (ρ, ρ′). GenericallyHomG (ρ, ρ′) is a
linear space. Whenρ = ρ′ thenHomG (ρ, ρ) is an algebra.

Definition. Two representations are unitarily equivalent when there exists a unitary intertwiner for
them. They are simply equivalent when an intertwiner of any type exists.

3.1. Theorem (Unitary Intertwiners). Let ρ, ρ′ be unitary representations which are equivalen-
t.Then they are unitarily equivalent.

17
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Proof. By assumption there existsV : H −→ H′ such that

V ρg = ρ′gV

=⇒ V †ρ′g = ρgV
†

=⇒ V V †ρ′g = V ρgV
† = ρ′gV V

†.

So eachρg commutes withV V †. LetA =
√
V V †, soρg commutes withA. Thereforeρg commutes

with A−1V . ButA−1V is unitary.

Definition. The intertwining number ofρ, ρ′ is

c(ρ, ρ′) = dim HomG (ρ, ρ′).

3.2. Theorem (Continuity of Unitary Representations).Letρ be a unitary representation ofG on
H. Then T.F.A.E.

1. ρ is strongly continuous.

2. ρ is weakly continuous.

3. g 7→ (ρgu, u) is continuous at the identity for allu ∈ H.

Proof. 1=⇒2=⇒3 follows from the definitions. We will prove 3=⇒1. Letu ∈ H, x, y ∈ G.Then

‖ρxu− ρyu‖ = 2 (u, u)− 2Re (ρyu, ρxu)

≤ 2| (u, u)− (ρyu, ρxu) |
≤ 2| (u, u)− (ρx−1yu, u) |

The implication follows from this inequality.

Definition. A representation is called (topologically) irreducible if it has no proper closed invariant
subspaces.

Remark.For unitary representations there exists a notion of orthogonal complement for an invariant
subspace. This allows a straightforward decomposition of representations.

3.3. Theorem (Orthogonal Complements).Let ρ be a unitary representation ofG onH. LetH1

be a subspace ofH with associated projectionP . Then

1. H1 is invariant if and only ifPρg = ρgP , g ∈ G.

2. H⊥1 is invariant if and only ifH1 is invariant.

Proof. This is a simple exercise.

Definition. A representationρ of G on H is called completely reducible if it is a direct sum of
irreducible subrepresentations,

H = ⊕iHi, Piρg = ρgPi.
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Remark.Here is a catch-all counter-example. LetG = R. LetH = R
2. Let ρ be a representation in

terms of upper-triangular matrices

ρx =

(
1 x
0 1

)
.

ClearlyH1 = {(u, 0) ∈ R2} is invariant. However, the complementH⊥1 is not invariant. This shows
that unitarity is necessary for the theorem on orthogonal complements.

Note further thatH1 is a proper closed invariant subspace. Howeverρ is not completely reducible.
The following theorem shows that unitarity cures this sickness as well, at least in the finite-dimensional
case.

3.4. Theorem (Finite Unitary Reducibility). Let ρ be a finite-dimensional unitary representation.
Thenρ is completely reducible.

Proof. Split out the invariant subspaces and their orthogonal complements. Proceed by induction.
The induction terminates becauseH is finite-dimensional.

Remark.The generic infinite-dimensional case requires the direct integral. Given this machinery, an
appropriately similar result holds. This is the Gelfand-Raikov theorem. See 3.4.

3.5. Theorem (Schur A). Let ρ, ρ′ be unitary irreducible representations ofG onH,H′. Suppose
V : H −→ H′ is a bounded linear transformation such that

V ρg = ρ′gV, g ∈ G.

Then eitherH ∼= H′ or V = 0.

Proof. As in the proof of the unitary intertwiner proposition,V †V commutes withρ. Let A =∫
λdE(λ) be a spectral representation forA = V †V . ThenρE(λ) = E(λ)ρ. Therefore every

closed subspaceHλ = E(λ)H is invariant. Butρ is irreducible by hypothesis, thereforeHλ = H or
Hλ = {0}. ThereforeA = λ1. SimilarlyV V † = λ′1 andλV = λ′V , so eitherλ = λ′ andV 6= 0, or
V = 0. SettingU = λ−1/2V for the caseV 6= 0, we haveU †U = UU † = 1. ThereforeH ∼= H′ by
U .

3.6. Theorem (Schur B).Letρ be a unitary representation ofG onH. Thenρ is irreducible if and
only if

V ρg = ρgV, g ∈ G⇐⇒ V = λ1.

Proof. Suppose that all operators commuting withρ are multiples of 1. Then ifP is a projection
operator commuting withρ, P = λ1, and thenRan(P ) = {0}. Therefore the only possible invariant
subspaces areH, {0}; thereforeρ is irreducible.

Conversely ifρ is irreducible andV is some operator commuting withρ, then the self-adjoint oper-
atorsV+ = 1/2(V + V †), V− = 1/2(V − V †) commute withρ. But V± must then be multiples of 1
by the proof of [Schur A]. ThereforeV is a multiple of 1.

Remark.In the finite-dimensional case we can make due without the assumption of unitarity, as
shown by the following theorem.
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3.7. Theorem. Let ρ be an irreducible representation ofG onH, dimH < ∞. ThenV ρ = ρV
⇐⇒V = λ1.

Proof. SupposeV ρ = ρV . Let N = ker (V ). Then{0} = V ρ · ker (V ). Thereforeρker (V ) ⊂
ker (V ), andker (V ) is invariant. By assumptionker (V ) = H or {0}. Suppose then thatker (V ) =
{0}, otherwiseV = 0. Let λ be an eigenvalue ofV . ThenV − λ1 commutes withρ by explicit
computation and so it must too haveker (()V − λ1) = H or {0}. But it cannot be{0} because
V − λ1 cannot have an inverse. Thereforeker (V − λ1) = H, andV = λ1.

Definition. A representationρ of G is called a factor representation when the center ofHomG (ρ, ρ)
consists purely of multiples of the identity,Z (HomG (ρ, ρ)) = {λ1}.

Definition. A representation is called primary if it cannot be represented as a sum of disjoint repre-
sentations;ρ 6= ρ1 ⊕ ρ2. Such a representation might have a proper invariant subspace, but it may be
impossible to split the space.

Definition. A factor representation is calledType I if it contains an irreducible subrepresentation.
A groupG is calledType I when all its factor representations areType I.

Remark.We note the following important facts. See [Mac89, p. 61].

• G compact=⇒G is Type I.

• G locally compact and abelian=⇒G is Type I.

• G is semi-simple Lie=⇒G is Type I.

• LetG be a countably infinite discrete group. ThenG is Type I if and only there existsN ⊂ G,
N abelian and normal, withG/N finite.

• G connected and nilpotent=⇒G is Type I.

• There exist connected Lie groups which are notType I.

Remark.Let F be the free group on two generators. Then the regular representation ofF is not
Type I, and soF is not Type I. Note thatF is the fundamental group of the planeR2 with two
punctures. This illustrates that it is possible to get in trouble very quickly. The representation theory
of F is quite difficult.

3.2 Locally Compact Abelian Groups

3.8. Theorem (One-Dimensionality).Let ρ be an irreducible unitary representation of a locally
compact abelian group. Thenρ is one-dimensional.

Proof. ρxρy = ρyρx. By [Schur B] thenρx = c(x)1, wherec(x) is a number depending onx.
Therefore anyH1 ⊂ H with dimH1 = 1 is invariant. Butρ is irreducible sodimH = 1.
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Definition. A characterχ of G is a one-dimensional continuous unitary representation ofG,

χ : G −→ C,

|χ(g)| = 1,

χ(g1)χ(g2) = χ(g1g2).

Let Ĝ denote the set of all characters ofG. ClearlyĜ is an abelian group.

Remark.Examples:

• G = Rn =⇒Ĝ = R
n.

• G = U (1) =⇒Ĝ = Z.

Notice the resultG ∼= ̂̂
G, for these cases. This is a general result called Pontryagin duality.

3.9. Theorem (Stone-Naimark-Ambrose-Godement).Let ρ be a continuous unitary representa-
tion of a locally compact abelianG onH. Let Ĝ be the character group ofG. Then there exists a
projection-valued measuredE(x̂) on Ĝ such that

ρ(x) =

∫
Ĝ

x̂(x) dE(x̂).

Proof. The functionx 7→ (ρxu, u), u ∈ H, is positive definite. Therefore there is a finite Borel
measureµu,u on Ĝ such that

(ρxu, u) =

∫
Ĝ

x̂(x) dµu,u(x̂),

by Bochner’s theorem. Use polar decomposition to write(ρxu, v) in terms of(ρxu′, u′) for someu′.
So there is a unique complex measureµu,v on Ĝ with

(ρxu, v) =

∫
Ĝ

x̂(x) dµu,v(x̂).

Now dµu,v is a bounded linear functional. Therefore by the Riesz lemma, for any Borel setB̂ ⊂ Ĝ

there is an operatorE(B̂) onH with
(
E(B̂)u, v

)
= µu,v(B̂). This operator-valued measure gives a

spectral measure, as can be checked. So

(ρxu, v) =

∫
Ĝ

x̂(x) (dE(x̂)u, v) .

Remark.The preceding theorem completely characterizes the unitary representations of locally com-
pact abelian groups. However, we can give some more details. In the next section we will prove the
Peter-Weyl theorem. As a corollary we will see that ifG is compact then̂G is countable. Now, the
projection-valued measures on such a space are simple; each one is an assignment of a projection op-
erator to each point of the discrete space. Therefore, up to equivalence, a representation is specified
by giving the dimension of the range of each projectionPx̂, x̂ ∈ Ĝ.
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Remark.In the noncompact case the measures onĜ are more diverse. Letν be a measure on̂G.

Define a representation ofG onL2
(
Ĝ; ν

)
given by

ρν(g)f(x̂) = x̂(g)f(x̂).

The projection-valued measure associated toρν is

P ν , P ν
Ef(x̂) = 1E · f(x̂) E ⊂ Ĝ.

Such projection-valued measures are equivalent if and only if their underlying measures are in the
same measure class [i.e have the same sets of measure zero],P ν1 = P ν2 ⇐⇒ ν1

∼= ν2. A complete
set of invariants for a unitary representation of a locally compact abelianG is a sequence of mutually
singular measure classes onĜ,

C∞, C1, C2, . . . .

See [Mac89].

3.3 Compact Groups

3.10. Theorem (Unitarization). Let ρ be a representation of a compact groupG onH. Then there
exists an equivalent inner-product onH such thatρ is unitary with respect to this inner product.

Proof. Define the new inner product by

(u, v)′ =

∫
G

dg (ρgu, ρgv) .

Because of the averaging procedure it is clear that(·, ·) is preserved byρ. Soρg are isometries with
domain equal to the whole Hilbert space, and therefore they are unitary. Now

‖u‖′2 ≤ sup
x∈G
‖ρ(x)‖

∫
G

dg (u, u) ≤ C ′ ‖u‖2 ,

and

‖u‖2 ≤ sup
x∈G

C ‖ρ(x)u‖2 ≤ C ′′ ‖u‖′2 .

So‖·‖ and‖·‖′ are equivalent.

Remark.This shows that if the groupG is compact, then it is sufficient to consider unitary represen-
tations because any given representation can be unitarized by an averaging procedure.

3.11. Theorem (Peter-Weyl).Let ρ be a unitary irreducible representation of a compact groupG,
on a Hilbert spaceH. ThendimH <∞. Furthermore∫

G

dg (ξ1, ρ(g)η1) (ξ2, ρ(g)η2) =
(ξ1, ξ2) (η1, η2)

dimH
.

Finally, if ρ1 6≡ ρ2 are irreducible representations then∫
G

dg (ξ1, ρ1(g)η1) (ξ2, ρ2(g)η2) = 0.
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Proof. The mapξ1 7→
∫
G

(ξ1, ρ(g)η1) (ξ2, ρ(g)η2) is clearly a bounded linear functional onH. By
the Riesz lemma it is equal toξ1 7→ (ξ1, ζ) for someζ ∈ H, which depends continuously onξ2.
Therefore there exists an operatorA with ζ = Aξ2; A depends onη1, η2. Now (ξ1, ζ) = (ξ1, Aξ2), so
we compute

(ρ(g)ξ1, Aξ2) =

∫
G

dg′ (ρ(g)ξ1, ρ(g′)η1) (ξ2, ρ(g′)η2)

=

∫
G

dg′ (ρ(g)ξ1, ρ(g′)η1) (ρ(g)ρ(g−1)ξ2, ρ(g′)η2)

=

∫
G

dg′′ (ξ1, ρ(g′′)η1) (ρ(g−1)ξ2, ρ(g′′)η2)

=
(
ξ1, Aρ(g−1)ξ2

)
.

So (ξ1, ρ(g−1)Aξ2) = (ξ1, Aρ(g−1)ξ2). ThereforeA ∈ HomG (ρ, ρ). But sinceρ is irreducible, by
Schur’s lemmaA = λ1.

A similar argument forη1, η2 then shows that∫
G

(ξ1, ρ(g)η1) (ξ2, ρ(g)η2) = C (ξ1, ξ2) (η1, η2) .

Now if ξ1 = ξ2 = η1 = η2 then

C =
1

‖ξ‖4

∫
G

dg | (ξ, ρ(g)ξ) |2

So clearlyC > 0.

Let {ei} be a collection ofn orthonormal vectors inH. Then
n∑
i=1

| (ξ, ρ(g)ei) |2 ≤ ‖ξ‖2

=⇒
n∑
i=1

∫
G

dg | (ξ1, ρ(g)ei) |2 ≤ ‖ξ‖2 ,

∫
G

dg = 1

=⇒
n∑
i=1

C ‖ξ‖2 ≤ ‖ξ‖2

=⇒ C ≤ 1

n
.

If H were infinite-dimensional then takingn → ∞ would giveC = 0. But C > 0. Therefore
dimH <∞.

Now let{ei} be a basis forH. Then the computation gives equality,C = 1/n.

Finally consider the case of two representationsρ, ρ′ which are inequivalent. SinceA ∈ HomG (ρ, ρ′),
A = 0. ThereforeC = 0.

Definition. Every group admits the so-called regular representations carried byL2 (G;µ). We have
already seen the left regular representation. Define the right regular representation by

ρR(g)f(g′) = f(g′g), f ∈ L2 (G;µ) .

In generalρR is highly reducible.
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3.12. Theorem (Right Regular Completeness).Each irreducible unitary representationρ of a com-
pact groupG is equivalent to a subrepresentation of the right regular representation,ρR.

Proof. LetDjk(g) be the matrix elements of the given representationρ. Consider the set of functions
fk =

√
dim ρD1k in L2 (G;µ). The span of{fk} in L2 (G;µ) gives a subrepresentation ofρR,

ρR(g0)fk(g) = D1k(gg0)
√

dim ρ

= D1j(g)Djk(g0)
√

dim ρ

= Djk(g0)fj(g).

This representation is clearly equivalent toρ.

Definition. Let ρ be a finite-dimensional representation. The character ofρ is the function onG
given byχρ(g) = Tr (ρ(g)) .

Remark.Characters have the obvious properties, stated in the following lemma. These properties
make characters homomorphisms from the representation ring into the ring of functions onG which
are constant on conjugacy classes.

3.13. Lemma.

χρ1⊕ρ2 = χρ1 + χρ2

χρ1⊗ρ2 = χρ1χρ2 .

3.14. Theorem (Schur Criterion). Let ρ be an irreducible unitary representation of a compact
groupG. Then one and only one of the following holds.

1. χρ 6= χρ,
∫
G
χρ(g

2)dg = 0, ρ 6∼= ρ.

2. χρ = χρ,
∫
G
χρ(g

2)dg = +1, ρ ∼= ρ, ρ is real.

3. χρ = χρ,
∫
G
χρ(g

2)dg = −1, ρ ∼= ρ, ρ is not real.

Proof. LetH be the representation space forρ. LetHS = H⊗S H,HA = H∧H, andρS, ρA acting
respectively. Now

Tr (ρS(g)) =
∑
i≤j

1

2
(ei ⊗ ej + ej ⊗ ei, ρS(g)(ei ⊗ ej + ej ⊗ ei))

=
∑
i≤j

(ei, ρ(g)ei) (ej, ρ(g)ej) + (ej, ρ(g)ei) (ei, ρ(g)ej) ,

and

Tr (ρA(g)) =
∑
i<j

(ei, ρ(g)ei) (ej, ρ(g)ej)− (ej, ρ(g)ei) (ei, ρ(g)ej) .
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Therefore

Tr (ρS(g))− Tr (ρA(g)) = 2
∑
i

(ei, ρ(g)ei) (ej, ρ(g)ej) + 2
∑
i<j

(ej, ρ(g)ei) (ei, ρ(g)ej)

= 2
∑

i ≤ j (ej, ρ(g)ei) (ei, ρ(g)ej)

=
∑
i

(
ei, ρ(g)2ei

)
= Tr

(
ρ(g)2

)
.

Soχρ(g2) = χρS(g)− χρA(g). Now it is a simple fact that
∫
G
χρ(g)dg is equal to the multiplicity of

the identity representation inρ. Therefore∫
G

χρ(g
2)dg =

∫
G

[χρS(g)− χρA(g)]dg

= dim FixG (HS)− dim FixG (HA).

Consider the action ofG onH ⊗ H. SinceH ⊗ H = HomG (H,H), and sinceρ is irreducible,
Schur’s lemma implies

dim FixG (H⊗H) = 0 or 1.

SinceH⊗H = H⊗S H +H⊗A H,

dim FixG (HS) + dim FixG (HA) = 0 or 1.

Therefore either

dim FixG (HS) = 1 anddim FixG (HA) = 0

or dim FixG (HS) = 0 anddim FixG (HA) = 1

or dim FixG (HS) = dim FixG (HA) = 0.

Supposeρ is equivalent to a real representation. Therefore it is orthogonal. Therefore
∑

i ei ⊗ ei
is invariant inHS, and we have case 2. Conversely suppose thatHS contains an invariant element.
This element can be diagonalized overC to a multiple of the identity, soρ(G) ⊂ O (n). In this case
we have the contrapositive of 3. This completes the classification.

Definition. Let Ĝ denote the set of irreducible unitary non-equivalent representations ofG.

3.15. Theorem (Peter-Weyl II). The set of functions
{
Dρ
ij(g) = (ξi, ρ(g)ξj) : ρ ∈ Ĝ

}
is complete

in L2 (G; dg).

Proof. Let L be the completion of the span of
{
Dρ
ij(g) : ρ ∈ Ĝ

}
. ConsiderL⊥. If we could show

thatL⊥ contained a non-trivial finite-dimensional right-invariant subspace, then we could consider
the right regular representation restricted to that subspace

ρR(g)ψk(g0) = ψk(g0g)

= Ds′

kj(g)ψj(g0), somes′ ∈ Ĝ.
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But thenψk(g) = Ds′

kj(g)ψj(e), so thatψ ∈ L. But ψ ∈ L⊥; thereforeψ = 0, but then the right-
invariant subspace was actually trivial. So, supposingL⊥ is non-trivial, let us construct a non-trivial
right-invariant subspace.

Pick a continuous symmetric functionw(x) in L⊥, and define an operatorA⊥,

(A⊥ψ)(x) =

∫
G

w(xy−1)ψ(y) dy.

Recall that symmetric meansw(x) = w(x−1). A⊥ is self-adjoint and compact. Furthermore,
Ran(A⊥) ⊂ L⊥, as the following computation shows.∫

G

(A⊥ψ)(x)Ds
jk(x) dx =

∫∫
dx dyw(xy−1)ψ(y)Ds

ij(x)

=

∫∫
dx′ dyw(x′)ψ(y)Ds

ij(x
′y)

=

∫∫
dx′ dyw(x′)ψ(y)Ds

ik(x
′)Ds

kj(y)

=

∫
dx′w(x′)Ds

ik(x
′)

∫
dyψ(y)Ds

kj(y)

= 0.

The final equality holds since the first term vanishes, sincew ∈ L⊥.

SoA⊥ projects ontoL⊥. Therefore any eigenfunction ofA⊥ is in L⊥. SinceA⊥ is compact it has
eigenspaces of finite multiplicity. Furthermore,∫

w(xyz−1)ψ(z)dz =

∫
w(xz−1)ψ(zy)dz,

soA⊥ρR = ρRA⊥. Therefore any eigenspaces ofA⊥ will be invariant underρR. As per the previous
comments,this completes the proof.

Definition. Givens ∈ Ĝ andj ∈ {1, . . . , dim s}, define the set ofdim s functions

Y s
(j)k(g) =

√
dim sDs

jk(g), k = 1, . . . , dim s.

Also define

Ỹ s
(j)k(g) =

√
dim sDs

kj(g), k = 1, . . . , dim s.

LetHs
(j) be the closure of the span of{Y s

(j)k} and similarlyH̃s
(j);Hs

(j) andH̃s
(j) carry representations

ρs(j), ρ̃
s
(j).

3.16. Theorem (Regular Reduction).

ρR =
⊕
s∈Ĝ

dim s ρs,

ρL =
⊕
s∈Ĝ

dim s ρs.
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Proof. ConsiderHs
(j). The H̃s

(j) are analogous. First,Hs
(j) ⊥ Hs′

(j′) for (s, j) 6= (s′, j′), so the
decomposition is unique, in the form

ρR = ⊕s∈Ĝ,j∈{1,...,dim sH
s
(j).

But ρs(j)(x)Y s
(j)k(x0) = Ds

lk(x0)Y s
(j)l(x); thereforeρs(j) = ρs(j′). Therefore

⊕j=1,...,dim sHs
(j)
∼= dim s · Hs

(1)
∼= dim sHs.

Definition. Let ρ, s ∈ Ĝ. Define the following operators which act on the spaceH carrying the
representationρ.

P s
pq = dim s

∫
G

Ds
pq(g)ρ(g) dg.

3.17. Lemma. We have the following properties.

1. (P s
pq)
† = P s

qp.

2. P s
pqP

s′

p′q′ = δss
′
δqp′Ppq′.

3. ρ(g)P s
pq = Ds

rp(g)P s
rq.

4. P s
pqρ(g) = Ds

qr(g)P s
pr.

Proof. These are simple calculations.

Remark.Consider the exampleG = SO (3). g = (φ, θ, ψ), φ ∈ [0, 2π), θ ∈ [0, π), ψ ∈ [0, 2π).
[Euler angles].

ρ(g) = exp(−iφJz) exp(−iθJy) exp(−iψJz)

dg =
sin θ

8π2
dφdθdψ

DJ
m,m(g) =

(
1 + cos θ

2

)m
P 0,2m
j−m (cos θ) exp[−im(φ+ ψ)]

P J
mm =

2J + 1

8π2

∫
DJ
m,m(φ, θ, ψ) ρ(φ, θ, ψ) sin θ dφ dθ dψ.

Remark.Suppose we have a factor representation. For compactG it will be of the formnsρs, where
ns is the multiplicity. LetP s

p = P s
pp, which is a projection operator. LetHs

p = P s
pH, whereH is the s-

pace for the factor representation,H = ρs⊕ρs⊕· · ·⊕ρs. The set
{
〈s; p| = P s

pqu : p = 1, . . . , dim s
}

for q fixed andu ∈ H fixed, transforms as a set of basis vectors in an irreducible representation e-
quivalent tos,

ρs(g) 〈s; p| = Ds
rpP

s
rqu = Ds

rp 〈s; r| .

So if we are given a factor representation in a particular form, then we can find the irreducible
subspaces by the following procedure.
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1. FindHs
q = P s

qH, q arbitrary but fixed.

2. Choose an orthonormal basis ofHs
q, {ui}.

3. For eachui, an irreducible subspace is given by
{
〈s; p| = P s

pqui : p = 1, . . . , dim s
}

. In this
way we find up todim s irreducible subspaces for the representations.

Remark.Let s1, s2 ∈ Ĝ, acting on spacesH1,H2. Pick a basis for each space,

{〈s1p1|} ⊂ H1, p1 = 1, . . . , dim s1

{〈s2p2|} ⊂ H2, p2 = 1, . . . , dim s2.

Consider the decomposition of the tensor product,

s1 ⊗ s2 = ⊕s∈ĜnsS.

Suppose thatns = 0 or 1 in the above. Then we can label the basis elements forHs as{〈sp|},
p = 1, . . . , dim s. A basis forHs1 ⊗Hs2 is given by

{〈s1p1| ⊗ 〈s2p2| p1 = 1, . . . , dim s1 p2 = 1, . . . , dim s2}.

Apply the operatorsP s
pq to write the basis vectors ofHs in terms of those forHs1 ⊗Hs2,

〈sp| = 1

N
P s
pq 〈s1p

′
1| ⊗ 〈s2p

′
2|

p = 1, . . . , dim s

q, p′1, p
′
2 fixed but arbitrary.

N = normalization constant.

Explicitly we have

〈sp| = 1

Np′p′1p
′
2

dim s

∫
G

Ds
pp′(g)ρ(g) 〈s1p

′
1| 〈s2p

′
2| ,

and

Np′p′1p
′
2

= |sp′〉 (〈s1p
′
1| ⊗ 〈s2p

′
2|) .

It is a simple calculation to show that

(|s1p1〉 ⊗ |s2p2〉) 〈sp| =
1

Np′p′1p
′
2

dim s

∫
G

Ds
pp′(g)Ds1

p1p′1
(g)Ds2

p2p′2
(g) dg.

In particular

Np′p′1p
′
2

=

[∫
G

Ds
pp′(g)Ds1

p1p′1
(g)Ds2

p2p′2
(g) dg

]1/2

.

In the case that the multiplicities ins1 ⊗ s2 are greater than 1, we will havens sets of basis vectors,
one for each of theui in steps 2 and 3 of the procedure given in the above remark. So we would have
〈sp|i and independent coupling coefficientsN i

p′p′1p
′
2
.
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3.4 Infinite-Dimensional Representations

Remark.When the group is no longer compact, infinite-dimensional representations are indispens-
able. It turns out that we must generalize the concept of direct sum to a direct integral of spaces
in order to properly describe the decomposition of representations. Furthermore, the concept of
character must be generalized, and this will require some generalized function theory.

Definition. Let (X,µ) be a Borel measure space. LetX index a set of Hilbert spaces{Hx}. Define
aµ-measurable field of Hilbert spaces to be({Hx}x∈X ,Γ) where

1. Γ is a subspace of
∏

xHx.

2. For everyγ ∈ Γ, x 7→ ‖γx‖Hx is measurable.

3. Letσ ∈
∏
Hx. If x 7→ (σ(x), γ(x)) is measurable for allγ ∈ Γ, thenσ ∈ Γ.

4. There existsγ1, γ2, · · · ∈ Γ such that, for everyx ∈ X, the closure of the set{γn(x)} is equal
toHx.

Definition. When the above hold, elements ofΓ are then calledµ-measurable vector fields. Define
γ ∈ Γ to be square-integrable if ∫

‖γ(x)‖2
Hx dµ(x) <∞.

Definition. The Hilbert space of square-integrableγ as given above, is called the direct integral of
Hx, denoted ∫ ⊕

Hx dµ(x).

Definition. Let {Ax} be a family of operators on the spaces{Hx}. Suppose that the functionx 7→
‖Ax‖Hx is bounded almost everywhere. Then the vector fieldx 7→ Axγ(x), for everyγ ∈ Γ, is

measurable. The set{Ax} then represents a bounded operator on
∫ ⊕Hx dµ(x), which is denoted

A =

∫ ⊕
Ax dµ(x).

Such an operator is called decomposable.

Remark.There are some interesting algebraic structures associated to locally compact groups. At
this point some operator-algebra theory is useful.

Definition. Let M1(G) be the algebra (under convolution) of bounded complex measures onG.
Defineµ∗ by dµ∗(g) = dµ(g−1). Then‖µ∗‖ = ‖µ‖, andM1(G) is an involutive Banach algebra.

Definition. If ρ is a unitary representation ofG andµ ∈M1(G), let

ρ(µ) =

∫
G

ρ(g) dµ(g).

We could call this the Fourier transform of the measureµ at the pointρ, µ̂(ρ). However, we will not
need this terminology in the following.
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3.18. Lemma. µ 7→ ρ(µ) is a representation of the involutive algebraM1(G) onHρ.

Proof. This is a simple computation.

Remark.L1 (G; dg) is embedded inM1(G) in an obvious way, and the above procedure provides a
representation ofL1 (G; dg) as well.

Definition. Complete the algebraL1 (G; dg) in the norm‖f‖1 = supρ ‖ρ(f)‖, where the supremum
is over all *-representations of the algebraL1 (G; dg). The resulting algebra is called theC∗-algebra
of G, C∗(G).

Definition. A *-representation is called non-degenerate if the closure of the set{
ρ(a)ξ : a ∈ L1 (G; dg) , ξ ∈ H

}
is equal toH.

3.19. Theorem.A representationρ of the algebraL1 (G; dg), or ofC∗(G), is generated by a unitary
representation ofG if and only ifρ is non-degenerate. In that case, the representation of the group is
uniquely determined.

Proof. See [Kir76, p. 144] and [Dix69, 13.3.1+13.3.4].

3.20. Theorem (Gelfand-Raikov).Every unitary representationρ of a locally compact groupG
can be decomposed into a direct integral of irreducible representations.

Proof. See [Kir76, p. 146].

Remark.We have the following special case which is some interest in its own right. [GGPS69, p.
23].

3.21. Theorem (Compact Operator Gelfand-Raikov).Let (ρ,H) be a unitary representation of a
locally compact groupG. Suppose that for allf ∈ C∞0 (G) ρ(f) is a compact operator. ThenH
splits as a discrete sum of irreducible unitary representations of finite multiplicity,

H =
⊕

miHi.

Proof. First consider the set off ∈ C∞0 (G) which are symmetric,f(g) = ¯f(g−1). For suchf ,
ρ(f) is self-adjoint. By assumption it is compact, so it has a countable discrete spectrum of finite
multiplicity, except possibly for the spectral point zero. Therefore we have the spectral representation

H′ =
∞⊕
k=0

H′(f, k), dimH′ <∞ for k 6= 0.

HereH′ is any invariant subspace (includingH itself). Let

H∞ =
⋃

f∈C∞0 (G), f symmetric, k 6=0

H(f, k).
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Suppose thatH∞ is a proper subspace ofH. Then we havev 6= 0 inH−H∞ with ρ(f)v = 0 for all
f . But this is not possible, by a simple calculation with approximate identities. SoH∞ = H.

So every invariant subspace ofH has a nonempty intersection with someH(f, k), k 6= 0, and
no H(f, k) is left out. Pick someH(f, k), k 6= 0. We know that there are invariant subspaces
intersecting this subspace. Take the minimal nonempty invariant subspace from these, call itH1. If
it were reducible then each of its components would intersect the chosenH(f, k), but this would
contradict its minimality. ThereforeH1 is irreducible.

Continue this procedure inductively, thus obtaining

H =
⊕
Hk, Hk = invariant irreducible.

Suppose that there was anHk which was not of finite multiplicity in the above. Pick someρ(f)
having an eigenvector inHk with eigenvalueλ 6= 0. By assumption this eigenvalue would be repeated
infinitely many times in the spectral decomposition ofρ(f) onH, which is not possible. Therefore
eachHk is of finite multiplicity.

Definition. A unitary representationρ is called completely continuous if for allf ∈ L1 (G; dg) ρ(f)
exists and is a compact operator. Some conditions for complete continuity are

• G semisimple Lie=⇒all irreducible unitary representations are CCR.

• G connected nilpotent Lie=⇒ditto.

I think that this is different from the following concept, but I am not sure.

Definition. Recall the notion ofType I representations. A locally compact group is called tame or
Type I if all its irreducible unitary representations areType I. See p. 20.

Definition. Suppose that, given a representationρ of G, we can find a subalgebraDρ(G) ⊂ M1(G)
satisfying

1. Dρ(G) is invariant under right and left translations.

2. ρ generates a representationρ̃ of Dρ(G) and can be reconstructed uniquely fromρ̃.

3. {ρ(µ) : µ ∈ Dρ(G)} are trace class and̃ρ is continuous.

Then the character ofρ is defined to be the linear functionalχ ∈ D′ρ(G) given by

〈χ, µ〉 = Tr (ρ̃(µ)) .

3.22. Theorem.LetG be a locally compact group. Then T.F.A.E.

1. For each irreducible representationρ on a spaceH, the character ofρ is defined on a dense
subalgebraDρ(G) ⊂ C∗(G), for whichρ̃(Dρ(G)) 6= 0.

2. G is tame.

Proof. See [Kir76, p. 162] [Dix69].
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3.23. Theorem.An irreducible representationρ of a locally compact groupG is defined up to e-
quivalence by its character.

Proof. {a ∈ C∗(G) : a∗a ∈ Dρ(G)} is a pre-Hilbert space with(a, b)χ = 〈χ, b∗a〉. Complete this
to a Hilbert spaceHχ. The mapφ : a 7→ ρ̃(a) is an isomorphism ofHχ with the space of Hilbert-
Schmidt operators onHρ, HS(Hχ). The actions of left and right translations byG on Hχ are
mapped into left and right multiplication byρ(g) in Hρ. Therefore the representation ofG in Hχ by
left translations is equivalent toρ.

3.5 Abstract Plancherel Theorem

Remark.Recall that for compactG we had the fundamental Peter-Weyl theory which gave

L2 (G; dg) ∼=
⊕
i∈Ĝ

Vi ⊗ V ∗i =
⊕
i∈Ĝ

Hom (Vi, Vi) .

The explicit map is given by

L2 (G; dg)→ Hom (Vi, Vi)

f 7→
∫
G

f(g)ρi(g) dg.

This was fundamental because of the implication that understandingĜ requires only understanding
L2 (G; dg). The non-compact case is similar but significantly more technical. It is zapped by some
heavyC∗-algebra theory.

Definition. LetA be a separableC∗-algebra. ThenA is called postliminal if it satisfies any of the
following equivalent conditions.

1. If π is an irreducible representation ofA, thenπ(A) contains the ideal of compact operators
onHπ.

2. If π1, π2 are irreducible representations ofA with ker (π1) = ker (π2), thenπ1
∼= π2.

3. LetH be a Hilbert space and̂AH be the set of irreducible representations ofA onH. Let∼= be
the relation of equivalence of representations. ThenÂH/∼= is a countably separated space.

See [Dix69, p. 99-101] [Con94, p. 460]. The equivalence of these is a theorem of J. Glimm.

Remark.Let A be a separable postliminal algebra. LetÂn be the setÂn ⊂ Â consisting of rep-
resentations of dimensionn, for n = 1, 2, . . . ,∞. Then there exists a Borel field of Hilbert spaces
ζ 7→ H(ζ), onÂ, with the property

ζ ∈ Ân =⇒ H(ζ) = Hn.

This is called the canonical field on̂A. See [Dix69, p.174-175].
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Remark.There is a bijection between̂C∗(G) andĜ for locally compact groupsG. This endowsĜ
with a topology. See [Dix69, p. 284-285, 353].

Remark.Let G be locally compact andType I. This is equivalent toC∗(G) being separable and

postliminal. Letζ 7→ H(ζ) be the canonical field of Hilbert spaces on̂C∗(G), defined above. Sup-
pose further thatG is unimodular. Then we have the following result.

3.24. Theorem.There exists a unique measureµ̂ on Ĝ, called the Plancherel measure, with the
following properties.

1. L2 (G; dg) ∼=
∫ ⊕
Ĝ
H(ζ)⊗H(ζ) dµ̂(ζ).

2. ρL =
∫ ⊕

(ζ ⊗ 1) dµ̂(ζ), ρR =
∫ ⊕

(1⊗ ζ) dµ̂(ζ).

3. If f ∈ C∗(G) thenζ 7→ Tr (ζ(f)) is a lower semi-continuous function on̂G, and f(1) =
δ1(f) =

∫
Ĝ

Tr (ζ(f)) dµ̂(ζ).

4. If f ∈ L1(G) ∩ L2(G), then
∫
G
|f(g)|2dg =

∫
Ĝ

Tr (ζ(f)ζ(f)∗) dµ̂(ζ).

Proof. These results are stated in [Dix69, p. 367-369]. They can be generalized to the non-separable
case.

3.6 Induced Representations

Remark.Induction is a procedure for constructing representations ofG given representations of a
subgroupH. In many cases all irreducible unitary representations ofG arise by induction from a
one-dimensional representation of a certain subgroup.

Definition. LetG be a locally compact group andH a closed subgroup ofG. Let ρ0 be a represen-
tation ofH onH. Define a linear space

L (G,H; ρ0) = {F : G −→ H : F measurable, F (hg) = ρ0(g)F (g)} .

Definition. Restrict attention to representations of the form

ρ0(h) =

[
∆H(h)

∆G(h)

]1/2

U(h),

whereU is a unitary representation ofH. Define a scalar product onL (G,H; ρ0) by

(F1, F2) =

∫
G

(F1(g), F2(g))Hm(g)dµR(g).

Then it is easy to see that the invariance of(·, ·) is equivalent to∫
H

m(hg)dµR(h) = 1, independent ofg.
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Definition. CompleteL (G,H; ρ0) with (·, ·) to obtain a Hilbert space which we denoteL2 (G,H; ρ0).
Define a representationρ of G onL2 (G,H; ρ0) by

(ρ(g)F )(g1) = F (g1g).

This representation is said to be induced fromH byU . We writeρ = Ind (G,H,U).

Remark.In words, we have introduced functions which transform in a particular way under the
action ofH on the left, and on these functions we have a representation ofG acting on the right. The
following gives a fundamental relation between induced representations and homogeneous spaces.

Definition. A unitary representation of a coset spaceH\G on a Hilbert spaceH is a pair(t, p) where
t is a unitary representation ofG onH andp is a *-representation ofC0(H\G) as an algebra with
pointwise multiplication, andt(g)p(f)t(g−1) = p(rgf), where(rgf)(x) = f(xg) is the usual right
action.

3.25. Theorem.A unitary representation ofG is induced fromH ⊂ G if and only if it can be
extended to a unitary representation ofH\G.

Proof. See [Kir76, p. 192] [Mac89].

3.7 Trace Formula: Compact Domain

Remark.Let (ρ,H) be a unitary representation of a locally compact groupG. Suppose thatf ∈
C0 (G). Recall the definition of the smearing operation

ρ(f) =

∫
G

f(g)ρ(g)dg.

Note that this is precisely the Fourier transform̂f(ρ), but we will make no use of harmonic analysis
in the following. The following results are from [GGPS69].

3.26. Theorem.Let Γ be a discrete subgroup of a locally compact groupG such thatΓ\G is com-
pact. Letρ = Ind (G,Γ, ρ0) be an induced representation ofG, induced fromΓ. If f ∈ C0 (G) then
ρ(f) is a trace-class compact integral operator.

Proof. Let h ∈ L2 (G,Γ; ρ0) be an element of the induced representation space, so that

h(γg) = ρ0(γ)h(g), γ ∈ Γ, g ∈ G.

By definition we haveρ(g0)h(g) = h(gg0) and so

ρ(f)h(g1) =

∫
G

f(g)h(g1g)dg.

So we have

ρ(f)h(g1) =

∫
G

f(g−1
1 g)h(g)dg

=

∫
F

(∑
γ∈Γ

f(g−1
1 γg)ρ0(γ)h(g)

)
dg,
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where F is a fundamental domain forΓ in G (not necessarily unique of course). So we have

ρ(f)h(g1) =

∫
F

K(g1, g)h(g)dg,

with kernel

K(g1, g) =
∑
γ∈Γ

f(g−1
1 γg)ρ0(γ).

Becausef ∈ C0 (G) andF is compact, only a finite number of terms in this sum are nonzero.
Therefore the kernel is a continuous function, and so it is the kernel of a compact integral operator.
ρ(f) is clearly trace-class since the domainF is compact.

3.27. Theorem.LetG, Γ, ρ be as above. Thenρ splits into a discrete sum of a countable number of
irreducible unitary representations, each of finite multiplicity.

Proof. This follows from the special compact operator case of the Gelfand-Raikov theorem 3.21.

3.28. Theorem.Let Γ be a discrete subgroup of a locally compact groupG such thatΓ\G is com-
pact. Further assume thatG is tame (Type I). Letρ = Ind (G,Γ, ρ0) be an induced representation
ofG, induced fromΓ. Letρ = ⊕mκρκ be the decomposition ofρ guaranteed by the above theorem.
Then, assuming that both sides exist,

Tr (ρ(f)) =
∑
κ

mκχκ(f),

whereχκ is the character ofρκ. This can be written more explicitly as∫
F

(∑
γ∈Γ

f(g−1γg)tr (ρ0(γ))

)
dg =

∑
κ

mκ

∫
G

f(g)χκ(g)dg.

Proof. SinceG is tame, the required characters exist, and the r.h.s exists. The l.h.s exists by assump-
tion. The rest follows from the definition of the character as a trace.

3.29. Theorem.LetG, Γ, ρ be as above. Assume further thatG is compact. Then we have

mκ =
1

Order(Γ)

∑
γ∈Γ

¯χκ(γ)tr (ρ0(γ)) .

Proof. We have for compactG,
∫
G

¯χa(g)χb(G)dg = δab. Insert this into the trace formula. We get∫
F

dg

(∑
γ∈Γ

¯χκ(g−1γg)tr (ρ0(γ))

)
= mκ∫

F

dg
∑
γ∈Γ

¯χκ(γ)tr (ρ0(γ)) = mκ,

and
∫
F
dg = 1/Order(Γ).
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3.8 Discrete Series

Definition. Let (ρ,H) be a unitary and irreducible representation of a locally compact unimodular
groupG. ρ is said to be square-integrable if there existv, w ∈ H such that

(v, ρ(g)w) ∈ L2 (G; dg) .

Definition. The discrete series ofG, denotedĜdisc, is the set of square-integrable unitary irreducible
representations ofG.

3.30. Theorem.LetG be a locally compact unimodular group and letρ ∈ Ĝ. Then T.F.A.E.

• ρ ∈ Ĝdisc.

• (v, ρ(g)w) ∈ L2 (G; dg) for all v, w ∈ H.

• ρ is a subrepresentation of the right regular representation.

Proof. See [Rob83, p. 153].

Remark.Recall that semisimple Lie groups are unimodular.

Remark.If ρ ∈ Ĝdisc we writeL2 (G, ρ; dg) for the subrepresentation of the right regular represen-
tation equivalent toρ.

3.31. Theorem (Formal Dimension).Let(ρ,H) ∈ Ĝdisc. Then there is a constantd(ρ) ∈ R, d(ρ) >
0, such that

(ρu1,v1 , ρu2,v2) =
1

d(ρ)
(u1, u2) (v1, v2, .)

Proof. DefineΘ(u) : H −→ L2 (G; dg) by Θ(u)v = ρuv. Then

(ρu1,v1 , ρu2,v2) = (Θ(u1)v1,Θ(u2)v2)

=
(
v1,Θ

†(u1)Θ(u2)v2

)
.

It is easy to see thatΘ†(u1)Θ(u2) commutes withρ. Therefore it is a multiple of the identity,
c(u1, u2)1. Similarly for v1, v2. So we have

(u1, u2)

c(u1, u2)
=

(v1, v2)

c(v1, v2)
≡ d(ρ).

Takeu1 = u2, v1 = v2 and see thatd(ρ) > 0.

3.32. Theorem.Let (ρ,H), (ρ′,H′) ∈ Ĝdisc. If ρ 6≡ ρ′, then(ρuv, ρu′v′) = 0 for all u, v ∈ H,
u′, v′ ∈ H′.
Proof.

| (ρuv, ρ′u′v′) | ≤ ‖ρuv‖ ‖ρ′u′v′‖
≤ C(u, u′) ‖v‖ ‖v′‖ ,

by the previous theorem. So there exists an operatorA(u, u′) : H′ −→ H with (ρuv, ρ
′
u′v′) =

(v, A(u, u′)v′). By the Riesz lemma there is av̄ ∈ HwithA(u, u′)v′ = v̄. Now‖v̄‖2 ≤ C ‖A(u, u′)v′‖ ‖v′‖,
so‖v̄‖ ≤ C ′ ‖v′‖. ThereforeA(u, u′) is bounded. But it is easy to see thatA(u, u′) intertwinesρ and
ρ′. This contradicts the assumption that they are not equivalent. ThereforeA(u, u′) = 0.
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3.33. Theorem (Formal Dimension II). Let ρ ∈ Ĝdisc. Suppose thatdim ρ < ∞. ThenG is com-
pact andd(ρ) = dim ρ/µ (G).

Proof. Let {ei} be an orthonormal basis ofH; {ei} is finite by assumption, and∑
i

| (ei, ρ(g)ei) |2 = 1

for anyg ∈ G. By the previous theorem we have

dim ρ

d(ρ)
=
∑
i

1

d(ρ)
(ei, ei) (ej, ej)

=
∑
i

∫
G

dg| (ei, ρ(g)ej) |2

=

∫
G

dg
∑
i

| (ei, ρ(g)ej) |2

= µ (G) .

Thereforeµ (G) <∞.

Definition. If L2 (G; dg) = ⊕ρ∈Ĝdisc
L2 (G, ρ; dg), thenG is called a Fell group.

Remark.There exist non-compact examples of Fell groups. See [Rob83].



Chapter 4

Lie Algebras

4.1 Introduction

Definition. Define a Lie algebra to be a real vector spaceg together with a bilinear map[·, ·] :
g× g −→ g such that

1. [x, y] = − [y, x].

2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Definition. A subspaceh ⊂ g is called an ideal if[h, g] ⊂ h.

Definition. Let ad (X) be given byad (X) : Y 7→ [X, Y ]. Thenad (X) is an automorphism ofg.

Definition. The Killing form of g is the quadratic form(X, Y ) ≡ Tr (ad (X) ad (Y )).

Definition. g is called semisimple if the Killing form(·, ·) is non-degenerate.g is called simple if it
is semisimple and has no non-trivial ideals.

Definition. A representation of a Lie algebrag over a fieldK is a homomorphismg→ gln (K), for
somen.

Definition. Let g be a Lie algebra. Note thatad (·) provides a representation ofg on itself. If this
adjoint representation decomposes as a direct sum of irreducible representations, theng is called
reductive.

4.1. Theorem. A Lie algebrag is reductive if and only ifg = a+s, witha abelian ands semisimple.
Furthermore, when this holds we havea = Z (g), the center ofg, ands = [g, g].

Proof. By assumptiong splits as⊕gi, wheread (·) acts irreducibly on eachgi. Eachgi is an ideal in
g sincead (·) acts irreducibly. Therefore eachgi is either simple or one-dimensional. Takes to be
the sum of the simplegi anda to be the sum of the one-dimensionalgi.

38
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4.2 sl2 (C)

Remark.The simplest non-trivial Lie algebra is the algebra of2×2 complex matrices with vanishing
trace,sl2 (C). The structure of this algebra is very important for the general theory, and so it is
convenient to study it first.

4.2. Lemma. The following elements provide a basis forsl2 (C) overC.

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

Furthermore, they satisfy the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Proof. This is a trivial observation.

4.3. Theorem. Letm ≥ 1 be an integer. Then up to equivalence there exists a unique irreducible
complex-linear representation of dimensionm, π, of sl2 (C). The representation space has a basis
{v0, . . . , vm−1} such that

• π(h)vi = (m− 1− 2i)vi

• π(e)v0 = 0

• π(f)vi = vi+1

• π(e)vi = i(m− i)vi−1

Proof.

Definition. The one-dimensional subalgebra generated byh is called the Cartan subalgebra ofsl2 (C).

Definition. Let π be the unique irreducible representation of dimensionm guaranteed by the theo-
rem. The set of eigenvalues ofπ(h), {m− 1,m− 3, . . . ,−(m− 3),−(m− 1)}, is called the set of
weights for them-dimensional representation. The vectorv0 is called the highest weight vector.

4.3 Weights and Roots

Remark.The infinitesimal theory is probably the most important tool for Lie groups. We will be
able to construct representations of the group from representations of the associated Lie algebra. In
the compact case, the classical theory of Lie algebras is powerful enough to yield all the unitary
representations of semisimple Lie groups. The representations will be constructed from certaing-
modules.

Remark.Recall thatg was defined to be semisimple if the Killing form was non-degenerate. This is
actually a somewhat involved idea. From the algebraic standpoint we might expect semisimplicity to
be a property depending on the structure of ideals ofg.
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Definition. The derived series ofg is the decreasing sequence of ideals defined by

Dr+1 = [Dr,Dr] , D0 = g.

Definition. g is said to be solvable ifDk = 0 for somek.

Definition. The radical ofg, rad (g), is the unique maximal solvable ideal ofg. Sinceg is finite-
dimensional, the radical exists.

Definition. g is said to be semisimple whenrad (g) = 0. One of our goals will be to prove the
equivalence of this definition to the previous definition in terms of the Killing form.

Definition. An elementX ∈ g is called a semisimple element ifad (X) : g −→ g is diagonalizable
overC.

Definition. The Cartan subalgebra ofg is the maximal abelian subalgebra of semisimple elements
of g. Equivalently, it is a subalgebra which is nilpotent and which is its own normalizer ing. [Jac62,
p. 57].

Definition. Let ρ be a representation ofg on a spaceV . A functionα : g −→ C is called a weight
of V if there is a nonzero vectorv ∈ V such that

(ρ(x)− α(x)1)k v = 0, for somek.

The set of such vectors together with0 ∈ V is a subspace ofV called the weight space ofα, Vα.

Definition. Let ρ∗ be the representation ofg acting onV ∗ by

(x, ρ∗(X)y) = − (ρ(X)x, y) , x ∈ V, y ∈ V ∗, X ∈ g.

Notice that(λ−α(X))dimV is the characteristic polynomial forρ(X), so(ρ(X)−α(X)1)dimV v = 0
for all v ∈ V .

4.4. Lemma. LetV be the weight space forα. ThenV ∗ is the weight space for−α.

Proof.

(x, ρ∗(X)y) = − (ρXx, y)

=⇒ (x, ρ∗(X)y) + (x, α(X)y) = − (ρ(X)x, y) + (α(X)x, y)

=⇒ (x, (ρ∗(X) + α(X)1)y) = − ((ρ(X)− α(X)1)x, y) .

By iteration then (
x, (ρ∗(X) + α(X)1)ky

)
= −

(
(ρ(X)− α(X)1)kx, y

)
.

Let k = dimV = dimV ∗. Then the right-hand side vanishes for allx sinceV is a weight space for
α. Thus(ρ∗(X) = α(X)1)ky = 0 for all y ∈ V ∗. SoV ∗ is a weight space for−α.

4.5. Lemma. Let V1 andV2 be weight spaces forα andβ respectively. ThenV1 ⊗ V2 is a weight
space forα + β.
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Proof. The tensor product representationρ = ρ1⊗ρ2 acts byρ(x1⊗x2) = ρ1(x1)⊗x2 +x1⊗ρ2(x2).
A simple computation gives

[ρ(X)− (α(X) + β(X))]m(x1 ⊗ x2) =
m∑
i=0

[ρ1(X)− α(X)]i · x1 ⊗ [ρ2(X)− β(X)]m−i · x2.

Takem = k + k′ − 1 wherek andk′ define the weight spacesV1, V2. Then all the terms on the
right-hand side vanish, so[ρ(X)− (α(X) + β(X))]m(x1 ⊗ x2) = 0.

Definition. Let h be a Cartan subalgebra ofg. Then the representationρ of g on V also gives a
representation ofh. Of particular interest is the case whereρ = ad (), the adjoint representation. The
weights associated to the adjoint representation are called the roots ofh in g.

Remark.Suppose thatad (Y ) is diagonalizable for allY ∈ h. This will occur when the eigenvalues
of the matricesad (Y ) lie in the base field; in particular it is automatic if the base field is algebraically
closed. Then the algebrag will split as a sum of root spaces

g = gα1 ⊕ gα2 ⊕ · · · ⊕ gαn .

4.6. Theorem. If α + β is a root then[gα, gβ] ⊆ gα+β. Otherwise[gα, gβ] = 0.

Proof. The set[gα, gβ] is the image of the linear spacegα ⊗ gβ under a mapπ defined by

π(
∑
i

X(i)
α ⊗X

(i)
β ) =

∑
i

ad
(
X

(i)
β

)
·X(i)

α .

Now we can calculate

ad (Y ) · [π(Xα ⊗Xβ)] = ad (Y ) · [ad (Xβ) ·Xα], Y ∈ h

= ad (Xβ) · [ad (Y ) ·Xα] + ad ([Xβ, Y ]) ·Xα

= π((ad (Y ) ·Xα)⊗Xβ +Xα ⊗ [Xβ, Y ])

= π(ad (Y ) · (Xα ⊗Xβ)).

Soπ is a homomorphism ofad (h) modules. Now apply the previous result regardingV1 ⊗ V2.

Remark.Let h be a Cartan subalgebra. Thenh is the root space for the trivial rootα = 0. Recall
D1 = [g, g]; note thatg is solvable if and only ifD1 is nilpotent.

Remark.LetR± be the set of rootsα such that−α is also a root, so that the following makes sense.
Then we have

h
⋂

D1 =
∑
α∈R±

[gα, g−α] .

This is a simple consequence of the definitions since

D1 =
∑
α,β

[gα, gβ] , andh = g0.
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4.4 Cartan Theorems

4.7. Lemma. Let the base field be algebraically closed and of characteristic zero. Letρ be a rep-
resentation ofg on V . Let h be a Cartan subalgebra ofg. Letα ∈ R±, eα ∈ gα, e−α ∈ g−α, and
hα = [eα, e−α]. If β is a weight ofh in V ,thenβ(hα) = qα(hα) for someq ∈ Q.

Proof. See [Jac62, p. 67].

4.8. Theorem (Cartan). Let the base field be of characteristic zero. Letρ be a representation ofg
onV , dimV <∞. Suppose

1. ker (ρ) is solvable ing.

2. Tr (ρ(X)2) = 0 for all X ∈ D1 = [g, g].

Theng is solvable.

Proof. AssumeD1 = g and leth be a Cartan subalgebra ofg. We have the decomposition into
weight spaces

V = Vβa ⊕ Vβ2 ⊕ · · · ⊕ Vβk ,

and the decomposition of the adjoint representation space

g = gα1 ⊕ gα2 ⊕ · · · ⊕ gαk .

h = h ∩D1, soh =
∑

α∈R± [gα, g−α]. Let eα ∈ gα, e−α ∈ g−α, and lethα = [eα, e−α].

Now ρ(hα) restricted to someVβ has a single characteristic rootβ(hα), sinceVβ is a weight s-
pace. Thereforeρ(hα)2 restricted toVβ has a single characteristic rootβ(hα)2. By assumption0 =
Tr (ρ(hα)2) =

∑
β dimVββ(hα)2. By the previous lemmaβ(hα) = rβα(hα) so0 = α(hα)2

∑
β r

2
βdimVβ,

and soα(hα) = 0. Thereforeβ(hα) = 0, and this holds for anyα. Thereforeβ(h) = 0, and so
V = V0, i.e. the only weight forV is β = 0. But thenρ(gα)V = 0 if α 6= 0.

=⇒ ∪{gα : α 6= 0} = g	 h ⊆ ker (ρ)

=⇒ ker (ρ) = g	 h⊕ k = (g⊕ k)	 h

=⇒ g/ker (ρ) ∼= h/k

=⇒ g/ker (ρ) is nilpotent, sinceh is nilpotent.

By assumptionker (ρ) is solvable, so theng is solvable. But we assumedD1 = g, in which case
D1 = D2 = Dk = · · · = g never terminates, and thusg is not solvable.⇒⇐. ThereforeD1 is
properly contained ing, D1 ⊂ g.

Now, if g satisfies both conditions, then so doesD1. Therefore we can repeat the argument forD1.
Proceeding inductively we get a proper towerDk ⊂ · · · ⊂ D1 ⊂ g. Since it is proper andg is finite
dimensional, the tower terminates, andg is therefore solvable.

We assumed that the base field was algebraically closed, in order to apply the lemma. Now assume
this is not the case. LetΩ be the algebraic closure of the field. Extend everywhere, so thatV becomes
a space overΩ, etc.



CHAPTER 4. LIE ALGEBRAS 43

Solvability ofker (ρ) implies solvability ofker (ρ)Ω. So the first condition holds forgΩ. Compute

Tr (ρ(X)ρ(Y )) =
1

2

[
Tr
(
(ρ(X) + ρ(Y ))2

)
− Tr

(
ρ(X)2

)
− Tr

(
ρ(Y )2

)]
.

Now an element ofgΩ can be writtenXΩ ∈ gΩ ≡ g⊗F Ω =
∑

i ωiXi,Xi ∈ g. Therefore

Tr
(
ρ(XΩ)2

)
=
∑
i,j

ωiωjTr (ρ(Xi)ρ(Xj))

= 0,

using the above computation and the second condition forg. Therefore the second condition holds
for gΩ as well.

So the argument follows forgΩ, and thereforegΩ is solvable. But this is equivalent to solvability of
g.

4.9. Theorem (Cartan II). Letg be a finite-dimensional Lie algebra over a fieldF of characteristic
zero. Theng is semisimple if and only if the Killing form is non-degenerate.

Proof. Let (·, ·) be the Killing form. Letg⊥ = {X : (X,Z) = 0, ∀Z ∈ g}; theng⊥ is an ideal.
Clearly(X,X) = Tr (ad (X) ad (X)) = 0 for all X ∈ g⊥. Therefore, by the previous theoremg⊥ is
solvable. But by assumptiong is semisimple, sog⊥ = 0, and so(·, ·) is non-degenerate.

Conversely, supposeg is not semisimple. Then there exists an abelian idealk ⊂ g, k 6= 0. But then
clearlyk ⊆ g⊥, and so(·, ·) is degenerate.

Remark.These proofs are taken from Jacobson [Jac62], with some changes of notation and a few
missing steps inserted.

Remark.The following shows that this simple criterion has an important consequence which allows
us to deal with non-algebraically closed fields.

4.10. Corollary. Let gF be a Lie Algebra over a base fieldF . ThengF is semisimple if and only if
gΩ is semisimple for every extension fieldΩ ⊃ F .

Proof. The statement in terms of non-degeneracy of(·, ·) makes this result trivial.

4.11. Theorem (Structure of Semisimple Algebras).Letg be a finite-dimensional Lie algebra over
a field of characteristic zero. Theng is semisimple if and only if

g = g1 ⊕ · · · ⊕ gr,

wheregi are simple ideals.

Proof. See [Jac62, p. 71].

Remark.This result is often used as the definition of semisimplicity.

Remark.Summarizing, we have found decompositions ofg, relative to any Cartan subalgebrah. It
may be necessary to pass to an extension field in order to obtain such a decomposition.Typically this
means complexifying an algebrag→ gC. Symbolically, the features are

[h, h] = 0

g = gα1 ⊕ · · · ⊕ gαk
ad (h) ·Xα = α(h)Xα, Xα ∈ gα.

Such a decomposition depends on the choice ofh.
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4.5 Root Systems

Definition. Let g be a semisimple Lie algebra and pick a Cartan subalgebrah. LetR be the set of
roots associated withh. R is called the root system forh. The span ofR in h∗ is called the root space
for h.

Remark.Sinceg is semisimple,(·, ·) is non-degenerate. ThenX 7→ (X, ·) defines an isomorphism
of g andh∗, and(·, ·) defines a bilinear form onh∗,

〈X∗, Y ∗〉 ≡ (X,Y ) .

The calculation in the Cartan theorem, showing thatTr (ρ(hα)2) =
∑

β dimVββ(hα)2, shows that
〈·, ·〉 is real and positive definite on the setR ∈ h∗.

Definition. The set of coroots is defined as

R′ =

{
2 〈α, ·〉
〈α, α〉

: α ∈ R
}
⊂ (h∗)∗ ∼= h.

We can writeαV = 2α/ 〈α, α〉,

αV ↔ α

(h∗)∗ ∼= h

4.12. Theorem (Root Systems).LetR be a root system. Then

1.
〈
αV , β

〉
= 2〈α,β〉
〈α,α〉 ∈ Z, for α, β ∈ R.

2. If α = cβ, α, β ∈ R, thenc = −1, 0,+1.

Proof. Pick any rootα and consider the spacesgα, g−α. LetX±α ∈ g±α and consider the subalgebra
spanned by{Xα, X−α, [Xα, X−α]}. The multiplication table is

[Xα, X−α] = Hα ≡
2 〈α, ·〉
〈α, α〉

[Xα, Hα] = −2Xα

[X−α, Hα] = 2X−α.

So this subalgebra is isomorphic tosl2 (C). But by explicit construction (raising and lowering oper-
ators), the eigenvalues ofρ(Hα) are integer valued for any representationρ.

Consider the representationρ(·) = ad (·). So the eigenvalues ofad (Hα) are integers. By defini-
tion of a root, if β ∈ R thenβ(Hα) is an eigenvalue ofad (Hα), so βHα ∈ Z. But β(Hα) =
2 〈α, β〉 / 〈α, α〉. So we have the first property.

Now Tr (ad (Hα)) = −2 + 2 = 0, but Tr (ad (Hα)) = (α, α) (1 − dim g−α − 2dim g−2α −
3dim g−3α − · · · ). Since(α, α) 6= 0, the only solution isdim g−α = 1 and the rest vanishing.
Therefore−2α,−3α, · · · 6∈ R, and similarly for+2α,+3α, . . ..
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Remark.This result constrains the geometry of root systems severely. Given any two rootsαi, αj,
the angle between them satisfies

cos2 θij =
〈αi, αj〉2

〈αi, αi〉 〈αj, αj〉
=

1

4

[
2 〈αi, αj〉
〈αi, αi〉

] [
2 〈αj, αi〉
〈αj, αj〉

]
=

1

4
mn, m, n ∈ Z

≡ 1

4
mij.

Definition. Each rootα defines a hyperplane normal to itself. Define reflection transformations
about these hyperplanes by

wα(x) = x− 2 〈α, x〉
〈α, α〉

α.

The set of all hyperplanes cuts the root space into a set of congruent simplicial cones called Weyl
chambers. The finite group generated by{wα} is called the Weyl group,Weyl (G) or Weyl (g, h). It
permutes the elements of the set of roots.

Definition. LetR be a root system. Pick a Weyl chamberC. From each pair of roots±α ∈ R, pick
the one which has the property〈α, λ〉 > 0 for all λ ∈ C. This set of roots with positive projection
ontoC is called the set of simple roots,S(R).

Definition. LetR be a root system. A positive root system forR ,R+ ⊂ R, is given by the conditions

R = R+ ∪ (−R+), R+ ∩ (−R+) = ∅.

α, β ∈ R+ with α + β ∈ R =⇒ α + β ∈ R+.

Note that the simple roots are precisely those roots which are not the sum of two (nonzero) positive
roots. A Weyl chamber defines a positive root system and vice-versa.

Definition. LetR+ be a positive root system. A rootλ ∈ R+ is called simple if it is not the sum of
any two other roots inR+. LetC be the Weyl chamber determined by the positive root systemR+.
Then the set of simple roots ofR+, S(R+), is the set ofα ∈ R+ with positive projection ontoC,
〈α, λ〉 > 0 for all λ ∈ C.

Definition. Let αi, αj be simple roots. Thenmij = 0, 1, 2, 3; the matrix

2 〈αi, αj〉
〈αi, αi〉

is called the Cartan matrix.

Definition. The Cartan matrix can be represented uniquely as a diagram according to the following
prescription. As above, leth be a Cartan subalgebra with associated simple rootsS. For each simple
root inS, draw one open circle. Connect the circles for rootsi, j by a number of lines equal tomij.
Recall from the above thatmij = 0, 1, 2, 3. If mij equals 2 or 3, then one of the roots is shorter; draw
an arrow toward the shorter root. Note that this diagram will be connected if and only ifg is simple.
It is called the Dynkin diagram forg.
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4.13. Theorem.Let Aut (g) be the group of automorphisms ofg and letInn (g) be the inner auto-
morphisms, which are by definition given by the adjoint action ong. Then we have

1. Inn (g) is a normal subgroup of finite index inAut (g).

2. Aut (g)/Inn (g) is the symmetry group of the Dynkin diagram ofg.

Proof. See [Wol80, p. 85].

Remark.TheAl series corresponds to the algebrasg = sll+1 (C), which are trace-free complexl+1-
dimensional matrices, with simply connected groupSLl+1 (C). The split real form isSLl+1 (R). The
compact form isSU (l + 1).

Remark.TheBl series corresponds to the algebrasg = o2l+1(C), which are antisymmetric complex
2l + 1-dimensional matrices, with simply connected group the two-sheeted cover ofSO (2l + 1;C).
The split real form isSO(l, l + 1). The compact form isSO (2l + 1).

Remark.TheCl series corresponds to the algebrasg = sp (l;C), which are complex2l-dimensional
matrices annihilating the antisymmetric formA((x, x′), (y, y′)) = xTy′−x′Ty, with groupSp (l;C).
The split real form isSp (l;R). The compact form isSp (l;C) ∩ U(2l).

Remark.TheDl series corresponds to the algebrasg = o2l(C), with groupSO (2l;C). The split real
form isSO(l, l). The compact form isSO (2l).

4.6 g Modules

Definition. Let V be a vector space over a fieldK. Suppose there exists a map (multiplication),
linear in both factors, satisfying

1. g× V → V , x, v 7→ xv

2. [x, y] v = x(yv)− y(xv).

ThenV is called a leftg-module. Note that every finite-dimensionalg-module provides a represen-
tation ofg.

Remark.Note thatg is itself ag-module, with multiplication given by the Lie bracket[·, ·]. This is
called the adjointg-module, and the representation which it provides is called the adjoint represen-
tation ofg.

Definition. Let T (g) be the tensor algebra overg. LetJ be the two-sided ideal inT (g) generated by
the elements of the formX ⊗ Y − Y ⊗X − [X, Y ]. Define the universal enveloping algebra ofg to
be the factor algebra

U (g) = T (g)/J.

Definition. The root lattice is the lattice generated by the simple roots,

Λroot = Z[S].
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The weights are the elements of the root space given by

Λweight =

{
β ∈ h∗ :

2 〈β, α〉
〈α, α〉

∈ Z for all α ∈ S
}
.

This is a lattice as well, as indicated by the notation.

Definition. The dominant weights are defined by

Λ+
weight =

{
β ∈ Λweight :

2 〈β, α〉
〈α, α〉

≥ 0 for all α ∈ S
}
.

Remark.We have already defined weights to be functionalsβ : g −→ C such that for some repre-
sentationρ on V there is a vectorv with (ρ(X) − β(X)1)kv = 0 for somek. The equivalence of
this definition to the above is somewhat nontrivial. The set of all such vectorsv was called a weight
space for theβ, Vβ. We have

Vβ = {v ∈ V : ρ(X)v = β(X)v for X ∈ h} .
Definition. Suppose(ρ, V ) is an irreducible finite-dimensional representation. Then there exists a
highest weightβHW ∈ Λ+

weight. Furthermore,V is isomorphic to a specific space, constructed as
follows. Define the following

ρ+ =
1

2

∑
α∈R+

α,

n+ =
∑
α∈R+

gα,

n− =
∑
α∈R+

g−α,

M(β)µ =
∑

pi∈Z,pi≥0,β−ρ+
∑
piαi=µ

[ep1
−α1

, . . . , epn−αn ]⊗ C.

And let

M(β) =
∑

ν∈Λ+
root

M(β)β−ρ+ν .

Here[ep1
−α1

, . . . , epn−αn ] is defined to be the subalgebra of the universal enveloping algebra generated
by the indicated elements. The spaceM(β) is called the Verma module forβ. The subalgebran+ is
called the nil-radical.

Definition. LetM be the maximal properg-submodule ofM(β). DefineL(β) = M(β)/M . Then
the spaceV above is isomorphic to

VβHW
∼= L(βHW + ρ+).

4.14. Theorem (Cartan). Letg be a complex reductive Lie algebra. Then the association of weights
with spaces given by

β ↔ L(β + ρ+)

is a bijection ofΛ+
weight onto the set of equivalence classes of irreducible finite-dimensionalg-

modules.

Proof. See [Wol80, p. 97].



Chapter 5

Lie Groups

5.1 Introduction

Definition. Define a Lie group to be a group which has the structure of aC∞ differentiable manifold,
such that the group operations are smooth. Clearly Lie groups are locally compact since they are
locally Euclidean.

5.1. Theorem (Gleason-Montgomery-Zippen).Let G be a locally Euclidean topological group
which is connected. ThenG admits a differentiable manifold structure making it into a Lie group.

Proof. This is difficult. The proof constitutes an affirmative solution to Hilbert’s fifth problem.
[MZ55].

Definition. Define a Lie subgroup of a Lie groupG to be a subgroupH ≤ G which is also a
submanifold.

Definition. A linear group is a Lie subgroup ofGLn (K), whereK is eitherR orC.

Definition. A linear connected reductive group is a closed connected linear group which is stable
under conjugate transpose. Inverse conjugate transpose for linear groups is called the Cartan involu-
tion.

Definition. A linear connected semisimple group is a linear connected reductive group with finite
center.

Definition. A Lie groupG is called simple if the following hold.

• dimG > 1.

• G has finitely many connected components.

• Any proper normal subgroup of the identity component ofG is finite.

Definition. A Lie groupG is called reductive if the following hold.

• G has finitely many connected components.

48
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• Some finite cover of the identity component ofG is a product of simple and abelian groups.

Definition. A Lie groupG is called semisimple if it is reductive and the decomposition above con-
tains no abelian factors.

Remark.This definition of reductive is taken from Vogan [Vog87]. It is subject to debate. The
following is another definition.

Definition. A Lie groupG is called reductive if it has a finite-dimensional representation with dis-
crete kernel such that the complement of any invariant subspace is invariant. Such representations
are called semisimple representations.

5.2 Infinitesimal Theory

Definition. A vector fieldX on a Lie groupG is said to be left-invariant ifdτσ ◦X = X ◦ τσ, where
τσ is left-translation. We have some standard results summarized in the following theorem.

5.2. Theorem. Letg be the set of left-invariant vector fields on a Lie groupG. Then

1. g ∼= TGe.

2. g is a Lie algebra with[X, Y ] (f) = X(Y f)− Y (Xf).

Proof. See [War83, p. 85].

Definition. As usual, letδ denote the dual tod; δf : TN∗f(m) −→ TM∗
m. A form ω onG is called

left-invariant if δτσω = ω. Left-invariant 1-forms are called Maurer-Cartan forms.

5.3. Theorem (Maurer-Cartan). Let {X1, . . . , Xn} be a basis forg and let{ω1, . . . , ωn} be the
dual basis. Then there exist constantscijk such that[Xi, Xj] = cijkXk, and furthermoredωi =∑

j<k cjkiωk ∧ ωj.
Proof. See [War83, p. 89].

Definition. Let σ ∈ G. Conjugation byσ acts on the space of left-invariant vector fields. Therefore
it induces an automorphism ofg. Denote this automorphism byAd (σ).

5.4. Theorem (Lie Modular Function). Let G be a Lie group. LetdµR and dµL be right- and
left-invariant Haar measures respectively. ThendµR(g) = c[det (Ad (g))]dµL(g), wherec is some
nonzero constant.

Proof. Let dθ = (det (Ad (g)))dµL(g). Let τ andρ be the left and right translations, and letI(g) =
τg ◦ ρg−1 be the conjugation map. Then

(ρa−1)∗dθ = det
(
Ad
(
ga−1

))
(ρa−1)∗dµL(g)

= det
(
Ad
(
ga−1

))
I(a)∗dµL(g).

And (I(x)∗dµL(g))e = det (Ad (x)) (dµL(g))e. So

(ρa−1)∗dθ)e = det
(
Ad
(
a−1
))

det (Ad (a)) dµL(g)e

= dµL(g)e

= (dθ)e.

Thereforedθ is left-invariant, and the result follows from the uniqueness of Haar measure.
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5.5. Theorem (Unimodularity Conditions).

1. Semisimple Lie groups are unimodular.

2. Connected nilpotent Lie groups are unimodular.

3. If Ad (G) is compact thenG is unimodular.

Proof.

1. Ad (g) leaves invariant the non-degenerate Killing form. Therefore|det (Ad (g)) |2 = 1. Ap-
ply the previous theorem.

2. G is nilpotent; ifX ∈ g thenad (X) is nilpotent. ThereforeTr (ad (X)) = 0. But det
(
eM
)

=

eTr(M), sodet (Ad (expX)) = 1. Apply the previous theorem.

3. {|det (Ad (G)) | : g ∈ G} is a subgroup ofR∗. If it is compact, then it is equal to{1}. Apply
the previous theorem.

Definition. LetG be a connected Lie group; letσ be an involutary automorphism ofG, soσ2 = 1.
Let H be a closed subgroup ofG and consider the homogeneous spaceG/H. G/H is called a
symmetric space ifσ(g) = g ⇐⇒ g ∈ H.

Remark.In the above situation, the Lie algebra ofG will split g = k ⊕ p, whereσ(k) = k, k ∈ k,
σ(p) = −p, p ∈ p, and we have

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

Definition. Define the rank of a symmetric space to be the dimension of the maximal abelian sub-
group ofp in the above split.

Remark.G = SO (n+ 1),H = SO (n),

σ(g) =

(
−1 0
0 1n×n

)
g

(
−1 0
0 1n×n

)−1

.

G/H ∼= Sn

rank (G/H) = 1.

Remark.The derivativep∗ : g̃ −→ g is an isomorphism of Lie algebras, so each connected Lie
group with a given algebrag is obtained by factoring its universal covering group by some discrete
subgroup of the center of the covering group. So we see that, up to taking covering groups, the
structure of a Lie group is determined by its Lie algebra. Furthermore, Lie algebras will play a
central role in the representation theory of semisimple Lie groups.



CHAPTER 5. LIE GROUPS 51

Remark.Recall that (possibly by passing to an extension field) we could find decompositions ofg,
relative to any Cartan subalgebrah.

[h, h] = 0

g = gα1 ⊕ · · · ⊕ gαk
ad (h) ·Xα = α(h)Xα, Xα ∈ gα.

The will depend on the choice ofh. However, we have the following important result, which is the
starting point for representation theory in the noncompact case.

5.6. Theorem (Chevalley).LetG be a connected Lie group with Lie algebrag.

1. If g is complex, then any two Cartan subalgebras areAd (G)-conjugate.

2. If g is real, then there are finitely manyAd (G)-conjugacy classes of Cartan subalgebras.

Proof. I do not know how to prove this. The statement is from Wolf’s lectures [Wol80, p. 79].

Remark.The following theorem provides a direct prove of the above for the compact case. The
proof shows that this case is similar to the complex case.

5.7. Theorem. LetG be a compact and connected Lie group with Lie algebrag. Leth1 andh2 be
Cartan subalgebras. Then there exists ag ∈ G such thatAd (g) h1 = h2.

Proof. Following Bott, we first prove a statement about the orbits ofAd (G). LetOY = Ad (G)Y ,
Y ∈ g. ThenOY intersectsh in a finite non-empty set of points. To see this, definef : OY −→ R

by f(Z) = (Z,X), whereX ∈ g is such thath = Lie({g ∈ G : Ad (g)X = 0}). OY is compact so
f achieves a minimum, say atY ∈ OY . Now

d

dt
f(Ad (exp tZ) (Y ))|t=0 = 0,

sinceY is the minimum. But the left-hand side equals([Z, Y ], X). Therefore([Z, Y ], X) = 0 for all
Z ∈ g, and so(Y, [X,Z]) = 0, soY ∈ h.

ClearlyOY meetsh perpendicularly, so they meet in a discrete set of points. But since they meet
perpendicularly, the set is finite. So we see thatOY intersectsh in a finite non-empty set.

Now leth1 = Lie({g ∈ G : Ad (g)X1 = 0}), and similarly forh2. Then there existsg ∈ g such that
Ad (g)X2 ∈ h1, by the intersection result. soAd (g) h2 = h1.

Remark.So we see that a compact connected Lie group has essentially one Cartan subalgebra, up
to Ad (G)-conjugacy, which is a trivial difference. However, the same is not true for non-compact
groups. For example, takeG = SL2 (R). Then one Cartan subgroup is

H1 =

{(
a 0
0 a−1

)
: a ∈ R, a 6= 0

}
.

The other one (there are only two) is

H2 =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ T

}
.



CHAPTER 5. LIE GROUPS 52

5.3 Decomposition Theory

Remark.There are several useful ways to decompose groups into simpler pieces. These methods
revolve around the extraction of maximal compact subgroups.

Remark.LetG have finitely many components. Then every compact subgroup ofG is contained in a
maximal compact subgroup. This follows simply from the local compactness ofG. If K is a maximal
compact subgroup thenG/K is a symmetric space; the involution which fixesK is called the Cartan
involution.G/K is a complete simply connected Riemannian manifold of negative curvature.

Remark.Let h be a Cartan subalgebra ofg. LetR+
h be a positive root system forh. We can define a

nilpotent subalgebra ofg by

n =
∑
ν∈R+

h

gν .

Integraten to obtain a connected, simply connected nilpotent subgroup ofG, N = expG n. Let
A = expG h.

5.8. Theorem (Iwasawa).Letψ : K × A × N −→ G be the mapψ(k, a, n) = kan. Thenψ is a
diffeomorphism,G ∼= K × A×N .

Proof.

Definition. Let M be the centralizer ofA in K, M ⊆ K. Then a minimal parabolic subgroup for
the given decomposition is the subgroup

P = MAN ⊂ G.

This decomposition is called the Levy-Langlands decomposition. Minimal parabolic subgroups are
used in the construction of the principal series of representations.

5.4 Topology of Compact Lie Groups

Remark.To begin, we will consider the classical groupsO (n), U (n), Sp (n).

Definition. The infinite classical groups are defined by

O (∞) =
⋃
n≥1

O (n) , SO (∞) =
⋃
n≥1

SO (n) ,

U (∞) =
⋃
n≥1

U (n) , SU (∞) =
⋃
n≥1

SU (n) ,

Sp (∞) =
⋃
n≥1

Sp (n) ,

where the topology is the inductive limit topology. Recall thatX1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X
givesX as an inductive limit if the inclusion mapsXm → Xm+k are continuous and any convex set
V ⊂ X is a neighbourhood of0 ∈ X if and only if V ∩Xn is a neighbourhood of0 ∈ Xn for all n.
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Definition. The Steifel spaces are the following coset spaces, which can be identified to spaces of
k-tuples.

Vk (Rn) = O (n)/O (n− k) [= SO (n)/SO (n− k), k < n]

Vk (Cn) = U (n)/U (n− k) [= SU (n)/SU (n− k), k < n]

Vk (Hn) = Sp (n)/Sp (n− k)

Vn (Rn) = O (n) , Vn (Cn) = U (n) , Vn (Hn) = Sp (n) .

Definition. The Grassmanian manifolds are obtained from the Steifel manifolds by identification of
k-tuples with planes.

Gk (Rn) = O (n)/(O (n− k)×O (k))

Gk (Cn) = U (n)/(U (n− k)× U (k))

Gk (Hn) = Sp (n)/(Sp (n− k)× Sp (k)).

Similar define oriented Grassmanians forR andC by

SGk (Rn) = O (n)/(O (n− k)× SO (k))

SGk (Cn) = U (n)/(U (n− k)× SU (k))

Remark.Some examples.

• G1 (Rn) = RP n−1.

• G1 (Cn) = CP n−1.

• G1 (Hn) =HP n−1.

• SG1 (Rn) = Sn−1.

• SG1 (Hn) = S2n−1.

Remark.The coset spaces are naturally bundles, and we have the following short sequences.

O (n)→ O (n+ 1) = Vn+1

(
R
n+1
)
→ O (n+ 1)/O (n) = V1

(
R
n+1
)

= Sn

U (n)→ U (n+ 1) = Vn+1

(
C
n+1
)
→ U (n+ 1)/U (n) = V1

(
C
n+1
)

= S2n+1.

5.9. Theorem (Stable Homotopy).

1. Leti ≤ n− 2. Thenπi (O (n)) ∼= πi (O (n+ q)), πi (SO (n)) ∼= πi (SO (n+ q)).

2. Leti ≤ 2n− 1. Thenπi (U (n)) ∼= πi (U (n+ q)), πi (SU (n)) ∼= πi (SU (n+ q)).

Proof. [Hus, p.82] If we have a fibering with projectionp : E −→ B and fiberF , then there is an
exact homotopy sequence

· · · → πn (E)→ πn (B)→ πn−1 (F ) πn−1 (E)→ · · · .
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Therefore we have the exact sequences

πi+1 (Sn)→ πi (O (n))→ πi (O (n+ 1))→ πi (S
n)

πi+1

(
S2n+1

)
→ πi (U (n))→ πi (U (n+ 1))→ πi

(
S2n+1

)
,

and similarly forSO (n) andSU (n). Clearly if i is small enough, then the sphere homotopies will
vanish. This establishes the result forq = 1. Forq > 1 factor the inclusions

O (n)→ O (n+ 1)→ · · · → O (n+ q)

U (n)→ U (n+ 1)→ · · · → U (n+ q) .

5.10. Theorem (Steifel Homotopy).

1. If i ≤ m− 1, thenπi
(
Vk
(
R
k+m

))
=0.

2. If i ≤ 2m, thenπi
(
Vk
(
C
k+m

))
=0.

Proof. Again consider the exact homotopy sequence; for example

· · · → πi (O (m))→α πi (O (m+ k))→ πi
(
Vk
(
R
k+m

))
→ πi−1 (O (m))→β · · · .

By the previous resultβ is an isomorphism. Clearly thenπi
(
Vk
(
R
k+m

))
= 0 sinceα is onto.

5.11. Theorem (Group Classifying Spaces).The fibrationVk (R∞) → Gk (R∞) is a universal
bundle forO (k). Similarly Vk (C∞) → Gk (C∞) is a universal bundle forU (k); Vk (R∞) →
SGk (R∞) is universal forSO (k); Vk (C∞)→ SGk (C∞) is universal forU (k).

Proof. This follows from the above stability results together with the definition of universal bundle.
See [Hus, p.83].

Remark.At this point is relatively straightforward to calculate some homotopy groups for the clas-
sical groups. We use the fact that the fibrationSO (n) → O (n) → Z2 gives the exact sequence
0 = πi+1 (Z2) → πi (SO (n)) → πi (O (n)) → πi (Z2). Similarly 0 = πi+1 (S1) → πi (SU (n)) →
πi (U (n))→ πi (S

1).

5.12. Theorem.

1. If i ≥ 1 thenπi (SO (n)) ∼= πi (O (n)).

2. If i ≥ 2 thenπi (SU (n)) ∼= πi (U (n)).

3. If i = 1 thenπ1 (SU (n))→ π1 (O (n))→ Z→ 0.

Proof. An easy consequence of the sequences in the above remark.

5.13. Theorem.

1. π1 (O (n)) = π1 (SO (n)) = Z2, for n ≥ 3.

2. π1 (O (2)) = π1 (SO (2)) = Z.
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3. π1 (U (n)) = Z, n ≥ 1.

4. π1 (SU (n)) = 0, n ≥ 1.

5. π1 (Sp (n)) = 0, n ≥ 1.

Proof. For U (1), SU (2), and Sp (1) = S3, simply calculate and then use the stable homotopy
result. ForO (2), calculate. ForO (3), and thusO (n ≥ 3) by stability, use the homeomorphism
SO (3) ∼= RP 3. So we see thatπ1 (G) is a trivial consequence of stable homotopy.

5.14. Theorem. If G is one ofO (n), SO (n), SU (n), Sp (n), thenπ2 (G) = 0.

Proof. UseSO (3) → SO (4) → S3 to get the exact sequence0 = π2 (SO (3)) → π2 (SO (4)) →
π2 (S3) = 0. Thereforeπ2 (SO (4)) = π2 (O (4)) = 0. By stability thenπ2 (SO (n)) = π2 (O (n)) =
0 for n ≥ 4. We already noted thatπ2 (SO (3)) = 0. That proves the result for theSO (·) series. The
rest are even easier.

Remark.This result onπ2 (G) is actually true for any compact Lie groupG, though the general proof
is significantly more complicated than the above.

5.15. Theorem.

1. π3 (U (n)) = π3 (SU (n)) = Z, n ≥ 2.

2. π3 (Sp (n)) = Z, n ≥ 1.

Proof. As noted beforeSU (2) ∼= Sp (1) ∼= S3. Soπ3 (U (2)) = π3 (SU (2)) = Z = π3 (Sp (1)).
Then the result follows from stability.

5.16. Theorem (Hopf). Let G be a compact connected Lie group. Then for some integers{kα}
depending onG we have

H∗ (G,R) ∼= H∗

(∏
α

S2kα−1,R

)
.

Proof. I do not know where to find the proof. The statement is from some lectures by Bott. [Bot77].

Remark.The set{kα} is called the set of exponents ofG. We have

H∗ (SU (n) ,R) ∼= H∗ (SU (n− 1) ,R)⊗ H∗
(
S2n−1,R

)
∼= H∗

(
S3,R

)
⊗ H∗

(
S5,R

)
⊗ · · · ⊗ H∗

(
S2n−1,R

)
,

H∗ (Sp (n) ,R) ∼= H∗
(
S3,R

)
⊗ H∗

(
S7,R

)
⊗ · · · ⊗ H∗

(
S4n−1,R

)
.

These are apparently easy to prove using the obvious fibrations and induction.However, the induction
fails for SO (n), and the results there are more complicated. See Ref. [Bot77]. Bott appears to prove
at least parts of the general statement, using some nifty Morse theoretic construction.
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Remark.The universal covering group of a Lie group exists, as it does for a general topological
group. Recall that if̃G is the universal covering group ofG, then

G ∼= G̃/N,

for some discrete normal subgroupN ; N is the kernel of a group homomorphismp : G̃ −→ G,
N = ker (p), andN ∼= π1 (G), which we can at the very least calculate using an exact sequence
[there are probably easier ways].

Remark.Consider the map̃g 7→ g̃ng̃−1 for n ∈ N . This is a map̃G→ N for eachn; it is continuous,
butN is discrete so it is a constant map. Thereforeg̃ng̃−1 is independent of̃g, soN is a subgroup of

the center ofG̃, Z
(
G̃
)

. Therefore, in particular,N = π1 (G) is abelian.



Chapter 6

Representations of Lie Groups

6.1 Compact Lie Groups: Weyl Formulae

Remark.We have seen the following facts for compact topological groups.

• From the general theory of locally compact groups, we know that irreducible representations
are completely determined by their characters.

• From the theory of compact topological groups, we know that the representations to be consid-
ered are irreducible, automatically unitary, and automatically finite-dimensional. Their charac-
ters are justTr (ρ(·)). The Peter-Weyl theorem further asserts that all of these representations
occur in the decomposition of the regular representation,L2 (G; dg) ∼= ⊕Vi⊗V ∗i , which is the
existence theorem for harmonic analysis onG.

The actual construction of representations is left open in general. In the case of compact Lie groups,
Weyl’s theory solves this problem explicitly. Compact and acceptable Lie groups obey the Weyl
character formula, which determines the characters of all the irreducible representations, The dimen-
sions of the representations are determined by the Weyl dimension formula, and the explicit structure
of the representations is given in terms of Verma modules.

Remark.Recall the definition

ρ+ =
1

2

∑
α∈R+

α,

whereR+ is a positive root system forg. See 4.6.

Definition. Let T be a Cartan subgroup ofG, with associated Cartan subalgebrat. G is called
acceptable if there is a character ofT , ξρ+, satisfying

ξρ+(expY ) = eρ+(Y ), Y ∈ t.

Remark.Charactersχ can be identified with linear functionsλ(χ), χ(expY ) = eλ(χ)(Y ). Weyl
discovered that ifG is compact, simply connected, and semisimple,then its universal covering group
is compact and acceptable. This makes the assumption of acceptability in the following theorem
interesting.

57
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6.1. Theorem (Weyl Character Formula). Let G be a compact, acceptable, and connected Lie
group. LetR+ be a positive root system. Then the irreducible characters ofG are in bijective
correspondence with the positive characters ofT .

Letχ be a positive character ofT , then the corresponding irreducible character ofG, Θχ, is given
by

Θχ =

 ∑
w∈Weyl(G)

det (w) (χ ◦ w)

 1

∆+
,

where

∆+ = ξ−1
ρ+

∏
α∈R+

(ξα − 1).

Furthermore,ξρ+ is a positive character,Θξρ+
is the trivial character, and

∆+ =
∑

w∈Weyl(G)

det (w) (ξρ+ ◦ w).

Proof. The character formula can be proven in the general algebraic context. It is a moderately long
calculation. See [Jac62, p. 249].

6.2. Theorem (Weyl Dimension Formula).LetG be as above. Letρ, Vλ be the representation on
theg-moduleVλ ∼= L(λ+ ρ+), corresponding to the highest weightλ. Then

dimVλ =
∏
α∈R+

〈λ+ ρ+, α〉
〈ρ+, α〉

.

Proof. See [Wol80][Jac62, p. 256].

Remark.The dimension formula can be expressed in a very explicit way. Letα be any positive root.
Define coefficientski by expressingα as a linear combination of the fundamental roots,

α =
l∑

i=1

kiαi.

These coefficientski are integral and non-negative. Also, express the dominant integral weightλ as
a linear combination of the fundamental weights,

λ =
l∑

i=1

miwi.

Themi are also integral and non-negative. Finally, given any positive rootα definec(α) by 〈α, α〉 =
c(α) 〈α0, α0〉, whereα0 is a root of minimal length. From the constraint on the Cartan matrix we
know thatc(α) can equal 1,2, or 3. Furthermore,c(α) can equal 3 only for the caseG2. Then we
have

dimVλ =
∏
α∈R+

∑l
i=1 ki(α)c(α)(mi + 1)∑l

i=1 ki(α)c(α)
.
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6.2 Compact Lie Groups: Borel-Weil Theory

Remark.Borel-Weil theory provides explicit realizations of the representations for compact Lie
groups as spaces of holomorphic sections of explicit vector bundles.

Definition. LetG be a compact Lie group with maximal torusT . Letn+ be the nil-radical ofg, with
conjugate subalgebran−. Define the Borel subalgebras

b = tC ⊕ n+,

b− = tC ⊕ n−.

Definition. LetG be a compact Lie group with complexificationGC. Define the Borel subgroup of
GC,B = HN− ⊂ GC, whereH = exp(tC),N− = exp(n−).

Definition. Let λ ∈ Λ+
weight. Define the homomorphismeλ : B −→ C× by

eλ(exp(t+ n)) = eλ(t), t ∈ tC, n ∈ n−.

Then eλ is a holomorphic map and it is a representation ofB on C. Let Lλ be the associated
holomorphic line bundleLλ, with baseGC/B. We are especially interested in sections of this bundle,
which we can identify with complex functions onGC which transform by the representationeλ under
translations byB.

6.3. Theorem (Borel-Weil). LetH0(Lλ) denote the space of holomorphic sections ofLλ. ThenGC
acts onH0(Lλ) by the irreducible representation of highest weightλ.

Proof. There is a detailed discussion of this construction in [Vog87, ch. 2]. For a short proof see
[Wol80, p. 106].

6.3 What is a Character?

Remark.So the representation theory for compact LieG is solved. All the questions are reduced
to certain technical calculations using the results of the Weyl theory. The noncompact Lie case is
much more involved. In particular, the characters must be constructed, and we know that in general
they will be distributional. Infinite-dimensional representations will be indispensable. Methods for
construction of representations will be important. In particular, induction from subgroups will enter.

Remark.We have seen the importance of characters. Recall that our discussions of topological
groups showed that an irreducible representation of a locally compact group is determined up to
equivalence by its character. Therefore it will be important to construct the characters as explicitly as
possible. This construction is due to Harish-Chandra, and constitutes one of the great contributions
to mathematics in the twentieth century. The basic goals for noncompact Lie groups are then

• DetermineĜ.

• Determine the Plancherel measureµ̂.

• Find an analogue of the Weyl character formula.
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Remark.What do the characters look like for infinite-dimensional representations? To get some
idea, considerG = S1. Let ρ be the regular representation, acting onH = L2 (G; dg). Let {en} be
the basis

{
einθ : n ∈ Z

}
of H. ThenG acts onH by ρ(eiθ)en = e−nθen. We would like to define

the character to be

χρ(e
iθ) = Tr

(
ρ(eiθ)

)
=
∑
n

einθ.

This converges weakly,χρ(eiθ) = δ(θ). So apparently the characters of infinite-dimensional repre-
sentations may be distributions. But we would also like to check that nothing too weird happens for
representations other than the regular representations.

Let ρ be an arbitrary unitary representation ofG = S1, acting onH. LetHn ⊂ H be the subspace
on whichρ acts by multiplication byeinθ. Then we write

H = ⊕nHn.

EachHn decomposes into copies of the basic representation space on whichρ acts by multiplication
by einθ, Hn = mnVn, soH = ⊕nmnVn. EachVn is finite-dimensional. Suppose thatmn = O(nk)
for somek. Then we can define

χρ(e
iθ) =

∑
n

mne
inθ.

By the assumption onmn, this converges weakly to a distribution.

So we see that not all representations ofG = S1 have a nice character. But the ones for which the
multiplicities{mn} do not grow quickly will have characters which are distributions onC∞ (G). We
will see that the required control of the characters is obtainable whenG is connected, semisimple,
and has finite center [whichS1 does not].

This useful look at the circle group was provided by Atiyah.

6.4 Harish-Chandra Program; Analytic Vectors; From g to G

Remark.The Harish-Chandra program is a systematic approach to linearization of the representation
theory, reducing the questions aboutG to questions aboutg. Because the representations are infinite-
dimensional in general, certain problems must be overcome. Starting with a representation ofG on
a spaceV , we will consider the representation of a maximal compact subgroupK. The basic tool
in the semisimple case is to show that this picks out a set of vectors on whichg acts. This set of
vectors will be called the set ofK-finite vectors, and passing to this set will reduce the representation
theory to algebra. The detailed description of this procedure is given in the following. Note that this
procedure is known to be inadequate without the assumption of semisimplicity.

Remark.Consider the simple case of a finite-dimensional representation(ρ, V ), dimV < ∞.
Clearly we can get a representation ofg, acting onV ,

ρ∗(X)v =
d

dt
ρ(exp tX)v|t=0, v ∈ V.
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To go backwards, fromρ∗ to ρ, assumeG is simply connected. Then there is a uniqueρ such that

ρ(expX) = exp(ρ∗(X)).

So the finite-dimensional case allows a simple relation between the representations ofg andG, where
it may be necessary to take a covering space ofG.

Definition. LetV be a Banach space carrying a representationρ ofG. Define the set of differentiable
vectors

V ⊇ V ∞ = {v ∈ V : g 7→ ρ(g)v is inC∞ (G)}
= {v ∈ V : g 7→ 〈w, ρ(g)v〉 is inC∞ (G) for all w ∈ V ∗} .

Definition. Introduce a representation ofg onV ∞ by

ρ∗(X)v =
d

dt
ρ(exp tX)v|t=0, v ∈ V ∞.

Let the Garding space ofV be the space

V ∞0 = Span {ρ(f)v : f ∈ C∞0 (G) , v ∈ V }

whereρ(f)v is well-defined forf ∈ C∞0 (G) by

ρ(f)v ≡
∫
G

f(g)ρ(g)v dg.

6.4. Theorem. V ∞0 ⊆ V andV ∞0 is dense inV .

Proof. Let w ∈ V ∞0 . So we havew ∈ Span{ρ(f)v}. Without loss letw = ρ(f)v for some
f ∈ C∞0 (G), v ∈ V . Then

ρ(g)w = ρ(g)ρ(f)v =

∫
G

f(g′)ρ(g)ρ(g′)vdg′

=

∫
G

f(g−1g′)ρ(g′)vdg′.

Sincef ∈ C∞0 (G), we can differentiate with respect tog under the integral, and sow ∈ V ∞0 .

Now we can prove the density result. Letv ∈ V . Consider the sequence{ρ(fn)v} where{fn} is an
approximate identity.

‖ρ(fn)v − v‖ ≤
∫

supp(fn)

|fn(g)| ‖ρ(g)v − v‖ dg

≤ C sup
g∈supp(fn)

‖ρ(g)v − v‖

→ 0.

Thereforeρ(fn)v → v.
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Definition. The space of analytic vectors,V ω, is given by

V ⊇ V ∞ ⊇ V ω = {v ∈ V : g 7→ 〈w, ρ(g)v〉 isCω onG for all w ∈ V ∗} .

6.5. Theorem (Nelson).V ω is dense inV .

Proof. Let v ∈ V . If we can find an approximate identity{fn} consisting of analytic functions, the
smearing with{fn} will produce the sequence of approximants that we want, similar to the smearing
with C∞0 (G) functions in the Garding construction. In the analytic case thefn cannot be compactly
supported, but they must be chosen so that they die sufficiently rapidly.

Let Xi be the generators of right translations onL2 (G; dg). Let ∆ be the unique self-adjoint ex-
tension of the operatorX2

1 + X2
2 + · · · + X2

n, where we can take the domain to beC∞0 (G). For
f ∈ C∞0 (G), let

φ(t, g) = (exp(t∆)f)(g),

soφ(t, g) is a solution of the heat equation onG. It is a simple exercise to show that, ifd(g) is the
geodesic distance to the identity,1 ∈ G, then

〈exp(sd(g))φ, φ〉 ≤ exp(
1

2
s2d(g)) 〈exp(sd(g))f, f〉 .

Since∆ is an elliptic operator with analytic coefficients, the solutions of the heat equation are analytic
functions fort > 0. So if f ∈ C∞0 (G) then the following integral representation defines an analytic
function fort > 0, v ∈ V ,

Ff,v(t, g) =

∫
G

[exp(t∆)(f)](g′−1g)ρ(g′)v dg′.

Let {fn} be an approximate identity and let{tn} = {1, 1/2, 1/3, . . . }. Take the diagonal sequence
asfn → δ, tm → 0, and so

‖Ffn,v(tn, ·)− v(·)‖ → 0.

But eachF...(. . . ) is inCω(G), andv ∈ V is arbitrary, soV ω is dense inV .

Remark.Using the heat kernel to smooth a sequence of functions is a standard trick. The proof
above is a little sketchy. For more details see [BR77, p. 358].

Remark.Note that the setV ω forms a common dense domain for the operators of the representation
{ρ(g) : g ∈ G}.
Remark.This type of construction can be extended to semigroups and arbitrary manifolds. The
method was initiated by Nelson and Garding around 1960. Harish-Chandra’s 1953 proof and analytic
construction were different, and somewhat more complicated.

Remark.Let G be connected, semisimple, with finite center. Recall that such aG has an Iwasawa
decomposition

G = K · A ·N,

whereK is compact,A is abelian, andN is nilpotent.
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Definition. Let ρ be a representation ofG on a Banach spaceV , and suppose thatG admits an
Iwasawa decomposition. For a representationκ of K, κ ∈ K̂, let

V ω(κ) = V ∞ ∩ V (κ),

whereV (κ) is the representation space forκ, V (κ) ⊆ V . Let

VK =
∑
κ∈K

V ω(κ).

6.6. Theorem (Harish-Chandra). Vκ is dense inV .

Proof. Let v ∈ V be arbitrary. For eachε > 0 there is aw ∈ V ω with ‖v − w‖ < ε/2. Since
V ω ⊂ V ∞, w ∈ V ∞, and so

∑
κ κ(K)w converges absolutely tow. Therefore, partial sums of∑

κ κ(K)w can be chosen arbitrarily close tov.

Definition. v ∈ V is calledK-finite if

dim Span {ρ(k)v : k ∈ K} <∞.

In particular,ρ is calledK-finite if eachV (κ) has finite dimension.

Definition. Recall some definitions that we have seen before.(ρ, V ) is called topologically irre-
ducible (TI) if V has no proper closedρ(G)-invariant subspace.(ρ, V ) is called topologically com-
pletely irreducible if forT : V −→ V bounded,{v1, . . . , vn} ∈ V , ε < 0, there is anf ∈ C∞0 (G)
with ‖(ρ(f)− T )vi‖ < ε for i = 1, . . . , n. This notion is interesting because it appears in the general
Schur’s lemma.

6.7. Theorem (Schur). If (ρ, V ) is TCI andT : V −→ V is a bounded linear transformation
commuting withρ(G), thenT = c1.

Remark.Gelfand calls the propertyTρ(G) = ρ(G)T =⇒ T = c1 “operator irreducibility”. He calls
topological irreducibility “subspace irreducibility”.

6.8. Theorem. Let (ρ, V ) be unitary and TI. Then it is TCI.

Proof. LetA be the set of bounded linear transformations onV satisfying

{T onV : {v1, . . . , vn} ⊂ V, ε > 0, f ∈M0(G), ‖(ρ(f)− T )vi‖ < εfori = 1, . . . , n} .

SoA is the algebra of operators onV satisfying the conditions in the definition of TI.A is a von
Neumann algebra. Also,ρ(G) ⊂ A. By the assumption, using Schur’s lemma, we haveAc = C. But
A is weakly closed, so by the von Neumann bicommutant theoremAcc = A. SinceAcc = C

c which
is the set of all bounded operators, the algebraA is in fact all the bounded operators. Therefore
(ρ, V ) is TCI.

Definition. Let Z (g) denote the center of the universal enveloping algebraU(g). Let M(λ) be a
weight space generated by a highest weight vector of weightλ− 1

2

∑
α∈R+

α. Define the infinitesimal
character to be the map giving the action ofZ (g) onM(λ), χλ : Z (g) −→ C.

6.9. Theorem. Let (ρ, V ) be a unitary and TI representation of a connected groupG. Then it has
an infinitesimal character.
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Proof. See [Wol80, p. 111].

6.10. Theorem.LetG be connected, semisimple, with finite center. Let(ρ, V ) be TI. Thenρ has an
infinitesimal character if and only if it is TCI. In that caseρ isK-finite and

VK =
∑
κ∈K̂

V (κ).

Proof. TCI =⇒infinitesimal character follows from the above. For the converse see [Wol80, p. 115].
See also [Var89, p. 143-144].

6.11. Corollary. LetG be as above. Let(ρ, V ) be a unitary representation ofG. If f ∈ L1 (G; dg),
thenρ(f) is a compact operator. ThusG is Type I.

Proof. By the theorem,ρ is TCI andK-finite. ρκ(τκ)ρ(f) = ρ(τκ ∗ f) are operators of finite rank.
The sum ∑

κ∈K̂

ρκ(τκ)ρ(f)

converges strongly toρ(f), soρ(f) is a strong limit of finite rank operators, and therefore compact.

Remark.The above results guarantee that irreducibleρ which areK-finite will play a central role in
the following. The goal is to prove the existence of a distributional character forρ.

Definition. Let {X1, . . . , Xn} be generators ofk chosen such that〈Xi, Xj〉 = −δij. Define the
differential operators

ωK = −(X2
1 + · · ·+X2

n),

E = 1 + ωK .

These operators are elements ofZ (g). As such they act as multiples of the identity on irreducible
subspaces. Forκ ∈ K̂, defineCκ(E) to be the unique eigenvalue ofE acting onV (κ).

6.12. Theorem.

1. Cκ(E) ≥ 1.

2. For sufficiently largem,
∑

κCκ(E)−m <∞.

3. There are constantsc > 0, r ≥ 0 such thatdimκ ≤ cCκ(E)r for all κ ∈ K̂.

Proof. Without loss we can take a finite cover ofK, and writeK = K1 × T whereK1 is compact
and semisimple andT is a torus. ThenωK = ωK1 + ωT . ClearlyωK ≥ 0 so 1 is obvious.

If we considerωT , we see that̂T = Z, ωT = −d2/dθ2, C(T )
n = 1 + n2, dimn = 1. Therefore 2 and

3 are clear for the torus part ofK.

Now consider the semisimple partK1; from the basic structure theory of semisimple Lie algebras,

k1 = h⊕ kα1 ⊕ kα2 ⊕ · · · ⊕ kαN ,
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where

h =
∑

α∈R±(k1)

[kα, k−α] .

Then

ωK1 = H2
1 + · · ·+H2

M + A1(Xα1X−α1 +X−α1Xα1) + A2(Xα2X−α2 +X−α2Xα2) + · · · .

By induction it is sufficient to considerk1 = sl2 (C) ∼= su (2). In that casêK1 = Z+ = {0, 1, 2, . . . },
Cn(E) = (n+ 1)2, anddimn = n+ 1. Then the results 2 and 3 follow.

Finally, given 1,2,and 3 forK1 andT separately, and usingωK = ωK1 + ωT , the results follow for
K.

Definition. LetG be connected, semisimple, with finite center. The Harish-Chandra characterΘρ is
given by

Θρ = Tr (ρ(f)) , f ∈ C∞0 (G)

ρ(f) =

∫
G

f(g)ρ(g) dg.

6.13. Theorem.Let G be connected, semisimple, with finite center. Let(ρ, V ) be a unitary irre-
ducible representation ofG. Thenρ(f) is trace-class forf ∈ C∞0 (G), so the above definition makes
sense.

Proof. By theK-finiteness result,dimV (κ) < ∞. Let {e(k)
i } be an orthonormal basis forV (κ).

Now ∣∣∣〈e(k1)
i , ρ(f)e

(k2)
i

〉∣∣∣ = Cκ1(E)−rCκ2(E)−r
∣∣∣〈e(k1)

i , Erρ(f)Ere
(k2)
i

〉∣∣∣ .
Define the operatorDr by ∫

f(g)Erρ(g)Er =

∫
(Drf)(g)ρ(g).

If Pκ is the projection ontoV (κ) then

|
∫
f(g)Erρ(g)Er| ≤

[∑
κ

∥∥PκE2rPκ
∥∥]∫ |f | ‖ρ(g)‖ .

The numbers‖PκE2rPκ‖ are simplyCκ(E)2, so they decrease to zero sufficiently rapidly forDr to
be a differential operator onf . Then we write

|
〈
e

(k1)
i , ρ(f)e

(k2)
i

〉
| ≤ Cκ1(E)−rCκ2(E)−r

∫
G

‖ρ‖ |Drf |.

Then, usingdimV (κ) <∞ again,

∑
k1,k2,i,j

|
〈
e

(k1)
i , ρ(f)e

(k2)
j

〉
| ≤ C

[∑
k1,k2

Cκ1(E)−rCκ2(E)−r

]∫
G

‖ρ‖ |Drf |.
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By the previous lemma, we can chooser sufficiently large that the sum converges, and so∑
k1,k2,i,j

|
〈
e

(k1)
i , ρ(f)e

(k2)
j

〉
| ≤ C ′

∫
G

‖ρ‖ |Drf |.

The right-hand side is a seminorm onC∞0 (G), so∑
k1,k2,i,j

|
〈
e

(k1)
i , ρ(f)e

(k2)
j

〉
| <∞.

This impliesρ(f) is trace-class.

6.14. Theorem.Θρ is a distribution onC∞0 (G).

Proof.
∑

n=1 k 〈en, ρ(f)en〉 is continuous onC∞0 (G) and tends toΘρ(f) ask → ∞. C∞0 (G) is
an inductive limit of Frechet spaces, soΘρ(f) is continuous onC∞0 (G) by the Banach-Steinhaus
theorem.

Remark.The second result of Harish-Chandra, which is the deepest of this set of results, is the fact
thatΘρ(f) is actually represented by a locallyL1 function which is moreover “almost” analytic. This
hinges on the use of differential equations which follow from theAd (G) invariance ofΘρ(f). The
invariance follows from the following computation

Θρ(f · Ad (g′)) = Tr

(∫
G

f(g′gg′−1)ρ(g) dg

)
= Tr

(∫
G

f(g)ρ(g′gg′−1)∆G(g) dg

)
since∆G = 1

= Tr

(∫
G

f(g)ρ(g′−1gg′) dg

)
= Tr

(
ρ(g′)−1ρ(f)ρ(g′)

)
= Tr (ρ(f))

= Θρ(f).

Remark.The local statement is, forz ∈ Z (g),

(zΘρ)(f) = Θρ(zf)

= Tr (ρ(zf))

= Tr (χρ(z)ρ(f))

= χρ(z)Tr (ρ(f))

= χρ(z)Θρ(f).

This is a system of differential equations,

zΘρ = χρ(z)Θρ, z ∈ Z (g) .
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Definition. The regular set ofG is defined by

Reg (G) =
{
g ∈ G : gAd(g) is a Cartan subalgebra ofg

}
.

6.15. Theorem.LetΘ be an invariant eigendistribution onG. ThenΘ is represented by integration
against a locallyL1 function which is analytic onReg (G).

Proof. The original Harish-Chandra proof is very complicated. For a simplified version, see [AS77].

Remark.A discussion using the example ofSL2 (R) is given by Schmid [Sch77]. A discussion of
the Harish-Chandra approach is given in some detail by Varadarajan [Var89, p. 208-220].

6.5 Induced Representations of Lie Groups

Remark.The concept of induced representations has been introduced previously for general topo-
logical groups. In the case of Lie groups, they have an interpretation in terms of vector bundles over
H\G.

Remark.For anyx ∈ H\G, we can get to any point in a neighbourhood ofx by the right action
of G. In other words, givenx ∈ H\G and a neighbourhoodW 3 x, there exists a smooth map
s : W −→ G such that

xs(y) = y, ∀y ∈ W.

This is easy to show using theexp map.

Remark.CoverH\G by nbhds. of the above form,{Wi}. Define transition mappings by

sij : Wi ∩Wj −→ G

y 7→ si(y)sj(y)−1.

Let ρ be a finite-dimensional representation ofH ⊂ G on a spaceV . Then the covering{Wi} and
the mapsy 7→ ρ(sij(y)) define a vector bundle overH\G which we denoteEρ. ClearlyEρ depends
only on the equivalence class ofρ. Eρ admits aG action, and so it is aG-bundle.

Remark.Given aG-bundleE overH\G, the vector space of sectionsΓ (E) carries a representation
of G,

(ρ(g)s)(x) = s(xg) x ∈ H\G, g ∈ G, s ∈ Γ (E) .

6.16. Theorem.EveryG-bundle overH\G is equivalent to a bundleEρ for some representationρ.

Proof. Constructρ in the following way. Letx0 ∈ H\G be an arbitrary point stabilized byH.
Then vectors inVx0 remain inVx0 under the right-action byH. Therefore this action defines a
representationρ onVx0.

Definition. LetC∞ (G,H, ρH) be the space of smooth functions onGwith values inV which satisfy

F (hg) = ρH(h)F (g).

C∞ (G,H, ρ) is right-invariant. Therefore we can define a representation ofG,

(ρ(g)F )(g1) = F (g1g).
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6.17. Theorem.The representation onC∞ (G,H, ρH) defined here is equivalent to the representa-
tion onΓ (EρH ) given above.

Proof. Let s ∈ Γ (EρH ). Definefs such that

(π(g), π∗fs(g)) = (Hg, s(g)).

The relations↔ fs is an isomorphism ofΓ (EρH ) ontoC∞ (G,H, ρH).

Definition. Suppose now thatH is connected. Define a representationσ of H onC∞ (G, V ) by

(σ(h)f)(g) = ρH(h)f(h−1g).

ThenC∞ (G,H, ρH) = {F ∈ C∞ (G, V ) : F is invariant underσ}. Let σ∗ be the corresponding
representation of the Lie algebra ofH, h.

6.18. Theorem.C∞ (G,H, ρH) coincides with the space of solutions of the system of equations

σ∗(X)f = 0, X ∈ h, f ∈ C∞ (G, V ) .

Proof. SinceH is connected, it is generated by an arbitrary neighbourhood of the identity. Some
neighbourhood of the identity is covered byexp, though not necessarily all ofG. Pick one such
generating neighbourhood. Invariance ofC∞ (G,H, ρH) by σ(G) translates into local invariance of
C∞ (G, V ) by σ∗ [take the derivative], and this must hold everywhere inG.

Remark.The equationσ∗(X)f = 0 is equivalent to

τXf + ρH∗(X)f = 0, X ∈ h,

whereτX is the left-translation onG corresponding toX ∈ g. This invariance condition admits a
very interesting construction. Complexify the Lie algebra,gC = g ⊗R C. Let n be the complex hull
of the real subalgebrah corresponding toH ⊂ G. Let r be a representation of the complex algebra
n corresponding to the representationρH of H. Then the solutions of

τXf + r(X)f = 0, X ∈ n

coincide with the solutions of

τXf + ρH∗(X)f = 0, X ∈ h.

Remark.As an example, considerG = R
2, g = R

2, gC = C
2. Letn be the one-complex-dimensional

subalgebra generated byX + iY . Let r be the one-complex-dimensional representation ofn which
takes the valueλ ∈ C atX + iY . Then the invariance equation is

∂f

∂x
+ i

∂f

∂y
+ λf = 0.

Thereforef = exp(−λz/2)φ(z), with φ holomorphic. Therefore there is a certain built-in holomor-
phicity; the invariance equations are related to conditions of holomorphicity. See [Kir76, p. 202].
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6.6 Principal Series

Remark.In the following letG = KAN be an Iwasawa decomposition ofG, whereG is connected
and semisimple. LetP = MAN be a minimal parabolic subgroup.

6.19. Theorem.Every finite-dimensional irreducible unitary representationρP of P has the form

ρP (man) = χ(a)ρM(m),

whereχ is a character ofA andρM is an irreducible representation ofM .

Proof. Recall thatAN is connected and solvable. Therefore all its irreducible representations are
one-dimensional. So there is a character ofAN and a vectorv0 such thatρP (an)v0 = χ(an)v0.
But χ(n) = 1 for all n ∈ N . ρP (M)v0 is stable underρP (man). But ρP (man) is irreducible by
assumption. ThereforeρP (M)v0 = H. ThereforeρP (an)v = χ(a)v for all v ∈ H.

Definition. Let M̃ be the normalizer ofA in K. ThenWr = M̃/M is called the restricted Weyl
group ofG. Wr acts on representations ofMA.

Definition. Let a be the Lie algebra ofA. Let

δ =
1

2

∑
α∈a∗

dim gα.

Defineβµ,η(man) = µ(m) exp((δ + iη) log(a)) for η ∈ a′, µ ∈ M̂ . This is an irreducible unitary
representation ofP onV (µ).

Definition. Consider the induced representations

T (µ, η) = Ind (G,P, βµ,η) .

These representations form the principal series ofG.

6.20. Theorem.

• T (µ, η) is unitary if and only ifη is real,η : a −→ R.

• T (1, η) is irreducible for allη ∈ a′.

Proof. [Bru56] [P+67] [Kos69] [Wal71] [KS71].

6.7 Discrete Series

Remark.Recall the definition of the discrete series of representations of a locally compact groupG.
For the case whenG is a semisimple Lie group, a great deal can be said about the construction of its
discrete series. These are the celebrated results of Harish-Chandra, and they are necessary to proceed
with harmonic analysis on the group. In fact, the discrete series and the principal series together have
full Plancherel measure, so no other representations are required for harmonic analysis.
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6.21. Theorem.T.F.A.E

• Ĝdisc 6= ∅

• rank (G) = rank (K)

• G has a compact Cartan subgroup.

Proof. [HC66].

Remark.The original discrete series construction of Harish-Chandra is long and difficult. Atiyah
and Schmid have given a simplified approach based onL2 index theory for the Dirac operator on an
associated compact quotient space [AS77].

Remark.See [Wol80, p. 123].



Chapter 7

Co-Adjoint Orbits

Remark.Let G be a Lie group with Lie algebrag. Denote the dual space ofg by g∗. Recall thatg
carries a representation ofG via the adjoint mapAd () : G −→ Aut (g), which is the derivative of
the conjugation mapAd () = A∗(1), A(g) : h 7→ ghg−1. The spaceg∗ is naturally realized as the
space of left-invariant differential 1-forms onG.

Definition. The coadjoint representation ofG acts ing∗ by right translations.

Remark.Consider the case of matrix groups, whereTGp
∼= Matn(C).

7.1. Theorem. Let G = GLn (C). A left-invariant vector field onG is a matrix-valued function
v(g). Every left-invariant vector field onG has the form

vA(g) = gA, for someA ∈ Matn(C).

Under the action of right translation we have

(ry∗)vA = vy−1Ay, y ∈ G.

Proof. Left and right translation are linear maps. Therefore they are equal to their derivatives. So we
have

τy∗v(g) = yv(y−1g) left action ry∗v(g) = v(gy−1)y right action.

Left-invariance meansv(g) = yv(y−1g), thereforey−1v(g) = v(y−1g). LetA = v(1), sov(y−1) =
y−1A. Thusv(g) = gA for someA ∈ Matn(C). Finally, givenv(g) = gA, the action of right
translation is clearly as claimed.

7.2. Theorem. LetG = GLn (C). A left-invariant 1-form onG is a matrix-valued functionω(g).
Every left-invariant 1-form onG has the form

ωB(g) = Bg−1, for someB ∈ Matn(C).

Under right translation we have

(r∗y)ωB = ωyBy−1 , y ∈ G.
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Proof. We identifyMatn(C)∗ ∼= Matn(C) using the dual pairing overR 〈X, Y 〉 = Re Tr (XY ).

The action ofr∗y on forms is defined by the dual pairing and the action ofry∗ on vector fields. We
write

Tr
(
(r∗yω)v

)
= Tr (ω(ry∗v))

= Tr (ωvy)

= Tr (yωv) .

This must be true for arbitraryv, so we haver∗yω = yω(gy). Similarly τ ∗yω = ω(yg)y. Left-
invariance ofω meansω(g) = ω(yg)y. LetB = ω(1), soω(y) = By−1.

Remark.Note that orbits ofG in g∗ under this coadjoint representation represent classes of similar
matrices.

Remark.In our discussion of induced representations for Lie groups we encounteredG-bundles
overH\G, which could be written in terms of vector-valued functions. As a special case we note the
following facts.

G-invariant differential forms onH\G correspond uniquely toH-invariant elements ofΛ
(
h⊥
)
. A

function onG corresponding to aG-invariant form is a constant with values inΛ
(
h⊥
)
, and its value

is anH-invariant element.

If Φ is an invariantk-form onH\G which corresponds to the exterior formφ ∈ Λk
(
h⊥
)
, thendΦ

corresponds to

Λk+1
(
h⊥
)
3 dφ(X1, . . . , Xk+1) =

1

k + 1

∑
i<j

(−1)i+j+1φ([Xi, Xj] , . . . , X̂i, . . . , X̂j, . . . ).

7.3. Theorem. Consider the orbits ofG in the coadjoint representation. LetΩ be such a coadjoint
orbit. LetF ∈ Ω, an arbitrary point on the orbit. LetGF be the stabilizer ofF . Then we have

gF = ker (BF )

where

BF (X,Y ) = 〈F, [X, Y ]〉 .

Proof. ker (BF ) = {X ∈ g : BF (X, Y ) = 0 ∀Y ∈ g}. Now

BF (X, Y ) =

〈
d

dt
K(exp tX)F |t=0, Y

〉
,

whereK(g) is the coadjoint representation. The assertion follows.

Remark.Now we will construct a 2-form on the space of a given orbitΩ. BF (X,Y ) depends only on
p(X), p(Y ) wherep : g −→ g/gF is the natural projection. ThereBF gives rise to a skew-symmetric
bilinear form ong/gF . Clearly this form, which we call̃BF , is non-degenerate.

7.4. Theorem. B̃F is aGF -invariant element ofΛ2 (g/gF )∗.
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Proof.

ρ(g)B̃F (X,Y ) = B̃F (Ad
(
g−1
)
X,Ad

(
g−1
)
Y )

= 〈K(g)F , [X,Y ]〉
= 0.

Remark.Using the correspondence between elements ofΛ
(
h⊥
)

andG-invariant forms, we have a
non-degenerateG-invariant 2-formBΩ on Ω = GF\G. It can be shown thatBΩ does not depend on
the choice ofF ∈ Ω. Using the formula fordΦ given above, it can be shown thatBΩ is closed.

Therefore we have found aG-invariant symplectic form on the orbit spaceΩ; Ω is a homogeneous
symplectic space.

7.5. Theorem. LetG be a connected Lie group. Then everyG-symplectic manifold is locally iso-
morphic [i.e up to taking covering spaces] to a coadjoint orbit ofG or of a central extension ofG
with the aid ofR.

Proof. See [Kir76, p. 234].

Definition. An orbit is called integral ifBΩ belongs to an integer cohomology class, i.e. the integral
of BΩ over an arbitrary 2-cycle is an integer.

7.6. Theorem (Borel-Weil-Bott). All irreducible representations of a compact, connected, simply
connected Lie groupG correspond to integralG-orbits of maximal dimension ing∗.

Proof. See [Kir76, p. 241].

Remark.The condition of integrality is equivalent to the quantization condition of “old quantum
theory”, ∮

pdq = nh.

Definition. Define a generalized functionIΩ by

〈IΩ, φ〉 =

∫
Ω

[∫
U

φ(expX)e2πi〈F,X〉dX

]
dβΩ(F ),

whereφ ∈ C∞0 (G) is defined in an open regionV ∈ G, andU is the inverse image ofV in g; dX is
ordinary Lebesgue measure ong∗, and

dβΩ(F ) =
1

k!
BΩ ∧ · · · ∧BΩ, 2k factors.

Remark.One conjectures that the character of a representation associated to an orbit is given by

χΩ = p−1
Ω IΩ,

wherepΩ is some function inC∞ (G) which is invariant under inner automorphisms, equals 1 at the
identity, and is different from zero on the open regionV . This is the so-called universal character
formula. So far this conjecture has been proven in the following cases.
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• Representations of compact simply connected LieG.

• Representations of exponential groups.

• Representations ofGL2 (R).

• Representations of the principal series of noncompact semi-simple groups.

See the papers of Kirillov.

Remark.For representations corresponding to orbits of maximal dimension, a single universal func-
tion pΩ can be selected,

q(expX) = det (ζ(ad (X)))

ζ(t) =
sinh(t/2)

t/2
.



Chapter 8

Projective Representations

Remark.This material is taken from Kirillov’s book. See [Kir76].

Definition. Let V be ann-dimensional linear space over a fieldK. Let PV be the corresponding
projective space. The group of automorphisms ofPV is

Aut (PV ) ∼= GLn (K)/{K · 1} ≡ PGLn (K) .

Similarly, if H is a Hilbert space, we writePH for its associated projective space. LetPŨ(H) be
the group of isometries ofPH. Then

PŨ(H) ∼= Ũ(H)/{λ · 1},

whereŨH is the group of operators which are products of unitary operators together with complex
conjugation [unitary and anti-unitary operators].

8.1. Theorem. LetB(H) be theC∗-algebra of bounded operators onH. Then

Aut (B(H)) ∼= PŨ(H).

8.2. Theorem. The connected component of the identity inPŨ(H) is

PU(H) ≡ U(H)/{λ · 1}.

Definition. A projective representation ofG on a finite-dimensional space is a homomorphism ofG
into PGLn (K). So every projective representation ofG on ann-dimensional projective space is a
map

t : G −→ GLn (K)

such that

t(g1)t(g2) = c(g1, g2)t(g1g2)

c : G×G −→ K\ {0} .

By equatingt(g1g2)t(g3) andt(g1)t(g2g3) we require

c(g1, g2)c(g1g2, g3) = c(g1, g2g3)c(g2, g3).

Therefore a projective representation uniquely defines an element ofH2 (G,K\ {0}).
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Definition. A projective unitary representation ofG is a homomorphism ofG into PŨ(H). If G is
connected then any such representation is a homomorphism intoPU(H).

Remark.LetG0 be a commutative subgroup ofG. Consider the central extension ofG byG0,

1→ G0 → G̃→ G→ 1.

Clearly we can obtain projective representations ofG from linear representations of̃G, ρ̃, by mapping
g 7→ ρ̃(g̃), with g̃ an arbitrary inverse image ofπ. We only require that̃ρ(g0) is a scalar operator for
all g0 ∈ G0.

8.3. Theorem. Every projective representation ofG is obtained from an extension by some group
G̃.

Proof. Projective representations correspond to elements ofH2 (G,K\ {0}). as we have already
noted. Letρ̃ be as described above, i.e. a linear representation such thatρ̃(g0) is scalar. A central
extension is then possible, identifyingG0 with a subgroup ofK\ {0}. The classes of such extensions
are as well classified byH2 (G,K\ {0}).

Definition. Let G be a Lie group with Lie algebrag. We can define an algebra cohomology as
follows. LetZ2(g,R) be the set of functionsc : g× g −→ R with the properties

1. c is bilinear and skew-symmetric.

2. c([X1, X2] , X3) + c([X2, X3] , X1) + c([X3, X1] , X2) = 0.

LetB2(g,R) be the subspace ofZ2(g,R) consisting of functions of the form

c(X1, X2) = 〈F, [X1, X2]〉 , F ∈ g∗.

Define a cohomology group

H2 (g,R) = Z2(g,R)/B2(g,R).

8.4. Theorem. Letg = g1 ⊕ g2 whereg1 is semisimple andg2 is a solvable ideal. ThenH2 (g,R) is
isomorphic to the subspace ofH2 (g2,R) generated byc ∈ H2 (g2,R) satisfying

c([X1, Y ] , X2) = c(X1, [Y,X2]), X1, X2 ∈ g2, Y ∈ g1.

8.5. Corollary. Every projective representation of a connected and simply connected semisimple Lie
group is obtained from a linear representation of the group.



Chapter 9

Analysis on Coset Spaces

9.1 Differential Operators

Definition. LetG be a Lie group. LetD(G) denote the set of left-invariant differential operators on
G. GivenX ∈ g define a vector field̃X onG by

(X̃f)(g) = X(f ◦ lg)

=
d

dt
f(g exp tX)|t=0.

Then(X̃(f ◦ lh)(h−1g) = (X̃f)(g). SoX̃ ∈ D(G).

9.1. Theorem. LetG be a Lie group with Lie algebrag. Then there exists a unique linear bijection

λ : Sym g −→ D(G),

such thatλ(Xm) = X̃m, whereSym g is the symmetric algebra over the vector spaceg. If {Xi} is a
basis ofg andP ∈ Sym g then

(λ(P )f)(g) = P (∂1, . . . , ∂n)f(g exp(tiXi))|t=0.

Proof. This is not too difficult. See [Hel84, p. 281].

9.2. Theorem. SupposeG is connected. LetZ (D) be the center ofD(G). LetI(g) ⊂ Sym g be the
set ofAd (G) invariants. Then

λ(I(g)) = Z (D) ,

andZ (D) is precisely the set of bi-invariant differential operators onG.

Proof. It is easy to see that̃XD = DX̃ if and only if

Drexp tX = D

for all t ∈ R. Alsoλ(Ad (g)P ) = Ad (g)λ(P ). So both statements are proven.
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Definition. Let H be a closed subgroup ofG, with Lie algebrah. Let m be any complementary
subspace,g = h⊕m. Usem andexp(·) to coordinatizeG/H.

DefineG/H to be reductive ifm can be chosen such thatAdG(h)m ⊂ m, h ∈ H. In particular, if
AdG(H) is compact thenG/H is reductive; ifH is compact then clearlyG/H is reductive.

Definition. DefineDH(G) = {D ∈ D(G) : Drh = D for all h ∈ H}, i.e. the set ofH-invariant
operators onG. If f is a function onG/H, definef̃ = f ◦ π.

Definition. DefineD(G/H) to be the set of differential operators onG/H which areG-left-invariant,
Dlg = D.

9.3. Theorem. AssumeG/H is reductive. Defineµ : u 7→ Du,

D̃uf = uf̃ ,

for f a function onG/H. Thenµ is a homomorphism ofDH(G) ontoD(G/H) with ker (µ) =
DH(G) ∩D(G)h. So

D(G/H) ∼= DH(G)/ker (µ).

Proof. See [Hel84, p. 285].

Definition. A homogeneous space is called two-point homogeneous if for any two pairs of points
(p, q), (p′, q′), with d(p, q) = d(p′, q′), there exists an isometryg with g(p) = p′, g(q) = q′.

Remark.It can be shown that a Riemannian manifold is a two-point homogeneous space if and only
if it is isotropic.

9.4. Theorem. LetG/K be two-point homogeneous. ThenD(G/H) consists of polynomials in the
Laplace-Beltrami operator.

Proof. By the property of two-point homogeneity,AdGK acts transitively on the unit sphere in any
tangent space ofG/K. Therefore, the set ofAdGK invariants inSym m is generated byX2

1 +· · ·+X2
r

where{Xi} is an orthonormal basis ofm.

9.5. Theorem. LetG/K be a symmetric space withK compact. ThenD(G/K) is commutative.

Proof. See [Hel84, p. 293].

9.2 Spherical Functions

Definition. LetG be a connected Lie group withK a compact subgroup. Letφ : G/K −→ C be a
smooth function withφ(π(1)) = 1. Thenφ is called a spherical function if the following hold.

• φlk = φ for all k ∈ K.

• Dφ = λDφ for all D ∈ D(G/K); λD ∈ C.



CHAPTER 9. ANALYSIS ON COSET SPACES 79

Definition. Recall the definitioñφ = φ ◦ π. We say that̃φ is spherical onG if φ is spherical on
G/K. If φ̃ is spherical onG then it isK-bi-invariant,

φ̃(kgk′) = φ̃(g), for all g ∈ G, k, k′ ∈ K.

9.6. Theorem. Letφ : G −→ C be continuous and not identically zero. Thenφ is spherical if and
only if ∫

K

φ(xky)dk = φ(x)φ(y).

Proof. See [Hel84, p. 400].



Chapter 10

Harmonic Analysis I

10.1 Introduction

Recall our basic goals given a topological groupG.

• Find Ĝ.

• Find the Plancherel measure on̂G.

• Find an analogue of the Weyl character formula, i.e. determine the characters.

These results form the foundation for harmonic analysis on any groupG.

10.2 Classical Fourier Series

Remark.The theory of classical Fourier series deals with functions on the torusT n. T n is a compact
abelian group and its irreducible (and thus one-dimensional) unitary representations are precisely the
characters

χ~m(~θ) = exp
[
2πi~m · ~θ

]
, ~m ∈ Zn.

where we have realizedT n as[0, 1]n.

Definition. Forf ∈ L2 (T n; dθ), the Fourier transform off is given by

(Ff)(~m) ≡ f̂(~m) =

∫
dnθ f(~θ)χ~m(~θ).

Remark.The Fourier transform has the interesting property that it diagonalizes the regular represen-
tation, (r(~φ)f)(~θ) = f(−~φ + ~θ), in the sense that the representationF ◦ r ◦ F−1 onL2 (Zn; δ) is
diagonal in the standard basis ofL2 (Zn; δ).
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Remark.Whenf is smooth we have the Plancherel formula

f(~θ) =
∑
~m

f̂(~m)χ~m(~θ)

=⇒ f(0) =
∑
~m

f̂(~m),

where the convergence is absolute. This is just the inverse ofF .

Remark.The fact thatF is unitary is expressed in the Parseval relation∫
Tn
fgdnθ =

∑
~m

f̂(~m)ĝ(~m).

10.3 Classical Fourier Analysis

Remark.Classical Fourier analysis deals with functions onRn, which is a locally compact abelian
group. The Fourier transform is defined first by a map on Schwarz spaceS(Rn),

(Ff)(~k) ≡ f̂(~k) =
1

(2π)n

∫
Rn

f(~x)e−i
~k·~x dnx.

This defines a bounded linear transformation and thus extends toLp (Rn; dx).

The Parseval relation onL2 (Rn; dx) is

1

(2π)n

∫
Rn

fgdnx =

∫
Rn

f̂ ĝ dnk.

Whenf is smooth the Plancherel formula holds

f(x) =

∫
Rn

f̂(k)ei
~k·~xdnk.

Remark.If T is a distribution,T ∈ S ′(Rn), then its Fourier transform is defined bŷT (f) = T (f̂),
f ∈ S(Rn). A particularly interesting case isT =

∑
~n∈Zn δ(~x− ~n). ThenT̂ =

∑
~m∈Zn δ(

~k− 2π~m).
This is equivalent to the Poisson formula∑

~n∈Zn
f(~n) =

∑
~q∈2πZn

f̂(~q), f ∈ S(Rn).

10.4 Locally Compact Abelian Groups

Remark.The classical theory extends to general locally compact abelian groups. LetG be such a
group in the following.

Definition. Recall that the set of characterŝG is itself a locally compact abelian group whenG is
ableian. Letχ ∈ Ĝ. Define the Fourier transform off ∈ L1 (G; dg) by

f̂(χ) =

∫
f(g)χ(g) dg.
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Remark.A small technical effort is required in order to define the Fourier transform onL2 (G; dg).
Define a norm

‖f‖0 = max(‖f‖∞ , ‖f‖2 ,
∥∥∥f̂∥∥∥

∞
), f ∈ C0 (G) .

DefineD(G) to be the completion ofC0 (G) with ‖·‖0. Convolution and conjugation extend toD(G)
making it a Banach *-algebra, and the Fourier transformF extends to a *-isomorphism ofD(G) onto
a subalgebra ofC(Ĝ) consisting of functions vanishing at infinity; the functions vanishing at infinity
are‖·‖0-dense in that subalgebra.

In sketch we do the following. Define a linear functional on̂D(G), which is the image ofD(G)
underF ,

Λ(f̂) ≡ f(1), f ∈ D(G).

ThenΛ|C0(Ĝ) is the Haar integral on̂G which we can use in the following way,

f(g) = (rg−1f)(1) =

∫
Ĝ

̂(rg−1f)(χ) dχ =

∫
Ĝ

f̂(χ)χ(g) dχ.

Now‖f‖2
2 = (f ∗◦f)(1) = Λ(|f̂ |2), and clearly we have

∥∥∥f̂∥∥∥
2
≤ ‖f‖2. But the set

{
f ∈ D(G) : f̂ ∈ C0 (G)

}
is easily seen to be dense inD(G) with the‖·‖2 norm. This shows that

∥∥∥f̂∥∥∥
2

= ‖f‖2. Therefore we

have the following theorem.

10.1. Theorem (Parseval).f 7→ f̂ is a unitary isomorphism ofL2 (G; dg) ontoL2
(
Ĝ; dχ

)
, for a

certain Haar measuredχ on Ĝ.

Definition. LetH be a closed subgroup of an abelian groupG. Define the annihilator ofH, H̆, to
be the subgroup

H̆ ≤ Ĝ

H̆ =
{
χ ∈ Ĝ : χ(h) = 1, h ∈ H

}
.

Then we havêG/H ∼= H̆ andĤ ∼= Ĝ/H̆.

Definition. If H is discrete andG/H is compact, thenH is called a lattice inG. In that caseH̆ is
also a lattice inĜ.

10.2. Theorem (Poisson Formula).LetΓ be a lattice inG. Normalize Haar measure so thatµ(G/Γ) =

1. Suppose thatf ∈ C(G) ∩ L1 (G; dg), andf̂ ∈ L1
(
Ĝ; dχ

)
, and that∑

γ∈Γ

f(g + γ),
∑
γ̆∈Γ̆

f̂(χ+ γ̆)

are uniformly convergent forg, χ varying over compact subsets ofG and Ĝ respectively. Then we
have ∑

γ∈Γ

f(γ) =
∑
γ̆∈Γ̆

f̂(γ̆)
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10.5 Compact Groups

Remark.The compact case is covered completely by the Peter-Weyl theory. This asserts that the
matrix elements of the irreducible representations ofG are complete and orthonormal inL2 (G; dg).
We have seen already how this occurs, in the general context of topological groups.

Remark.The first really nontrivial example is probablySO (3). Harmonic analysis onSO (3) is
based on application of Peter-Weyl theory and a specific realization of the regular representation.
For eachn = 0, 1, 2, . . . define a matrixAn ∈ Mat(2n+ 1, 2n+ 1) by

Y m
l (gx) =

∑
|k|≤l

(Al(g))l,k Y
k
l (x), g ∈ SO (3) .

In other words,An(g) implements the regular representation ofSO (3) on the representation of di-
mension2l + 1. As such, the matrix elements ofAl for all l are complete inL2 (SO (3) ; dg); theAl
are a complete set of irreducible unitary representations. [Actually this is more subtle; it apparently
fails for SO (n), n ≥ 4].

Then we define

f̂(l) =

∫
SO(3)

f(g) [Al(g)]† dg

and

f(g) =
∞∑
l=0

(2l + 1)Tr
(
f̂(l)Al(g)

)
.

We will encounter more examples later, when considering the group theoretic approach to special
functions.

Definition. Let G be a compact group. Letf ∈ L1 (G; dg). Then the Fourier transform off is
defined to be the operator-valued function onĜ given by

f̂(κ) =

∫
G

f(g)ρκ(g
−1)dg.

Of coursef̂(κ) is a finite-dimensional operator, so there are no function-analytic complications.

Remark.The Peter-Weyl theorem shows that, iff ∈ L1 (G; dg) ∩ L2 (G; dg), then∫
G

|f(g)|2 =
∑
κ∈Ĝ

dimκ Tr
(
f̂(κ)∗f̂(κ)

)
.

10.6 Noncompact Groups

Definition. LetG be a locally compact group. Letf ∈ L1 (G; dg). Define the Fourier transform to
be the operator-valued function on̂G given by

f̂(κ) =

∫
G

f(g)ρκ(g
−1)dg.



Chapter 11

Harmonic Analysis II

11.1 Sampling Theorem on the Circle

Definition. Let f ∈ C ([0, 1]) with a Fourier series repesentationf(t) =
∑∞

m=−∞ fm exp(2πimt).
We say thatf is band-limited with band limitM if f(t) =

∑
|m|≤M fm exp(2πimt).

Remark.Band-limited functions on the circle are clearly smooth and periodic, and the finite sum
obviously exists pointwise everywhere.

Remark.Because a band-limited function is specified by a finite number of parameters, one imagines
that it is possible to reconstruct the function from a finite amount of data, such as the values at
some finite set of points. This is true in general, and we can construct many explicit such sampling
schemes, of which we will examine the most common shortly.

11.1. Theorem.Let {fi} be a set of sample values, supposed given at a set of distinct points
{ti ∈ [0, 1]}, i = 1, . . . , 2M + 1. Then amongst the band-limited functions with band limitM there
exists a unique functionf(t) with f(ti) = fi.

Proof. This is an elementary statement. Letz(t) = exp(2πit). Then a band-limited function with
band-limitM is a Laurent polynomial inz, of orderM , f(t) =

∑
|m|≤M fmz

m. As such it has a
unique analytic continuation to an annulus containing the unit circle and separated from the origin
and infinity. Such a Laurent polynomial is uniquely specified by its values at any set of distinct
2M + 1 points within the annulus, in particular by the2M + 1 values atz(ti).

11.2. Theorem.Letf be a band-limited function on[0, 1], with band limitM . Lettn = n/(2M+1).
Then the following equality holds pointwise.

f(t) =
1

2M + 1

∑
|n|≤M

f (tn mod 1)
sin((2M + 1)π(t− tn))

sin(π(t− tn))
.

Proof. This will be an easy consequence of a more powerful result which we will prove below.

11.2 Sampling Theorem on the Line

Definition. Let f ∈ L2 (R) ∩ L1 (R) and let f̂ be the Fourier transform off . We say thatf is
band-limited with band limitW if f̂ is zero outside of[−W,W ].
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11.3. Theorem.Letf ∈ L2 (R) be band-limited with band limitW . Then the following holds,

f(t) = lim
N−>∞

∑
|n|≤N

f
( n

2W

)
S(t− n/2W ),

with

S(t) =
sin(2πWt)

2πWt
,

where the sum converges absolutely.

Proof. This will be an easy consequence of a more powerful result which we will prove below.

Remark.The sampling kernel which appears here is clearly related to the one for sampling on the
interval given above. One can construct the kernel for the interval by summing the kernel for the line
in order to make it periodic, as it must be. This is a sum over equally spaced poles, and the residues
imply that the sum is equal to1/ sin(2πt) (the theorem of Mittag-Lefler applies). The converse arises
by contracting the formula for the circle to the tangent space at zero, a kind of Wigner contraction.

11.3 Sampling as Spectral Analysis on the Dual Space

Remark.Each of the above sampling theorems is a consequence of a more general picture. This
general picture shows that the convergence of sampling theory can be interpreted as convergence of
expansions in the dual or frequency space.

11.4. Lemma. Fix a topological spaceT and a measure spaceΩ. Letf : T −→ C andg ∈ L2 (Ω),
and suppose

f(t) =

∫
Ω

dµ(ω)K(t, ω)g(ω),

whereK(t, ω) is an integral kernel, continuous in each variable, and square-integrable inω for all t.
Let{φn(ω)} be an orthonormal basis forL2 (Ω). DefineSn(t) = (K(t, ·), φn(·)) =

∫
dωK(t, ω)φ∗n(ω).

Suppose finally that there exists a set{tn ∈ T }, such thatK(tn, ω) = φn(ω). DefinefN(t) =∑
n≤N f(tn)Sn(t). Then

f(t) = lim
N→∞

fN(t),

where the convergence is pointwise and absolute.

Proof. LetDt,n(ω) = K(t, ω)− φn(ω) (K(t, ·), φn(·)). We have

|f(t)− fN(t)| ≤
∫

Ω

dω |g(ω)||Dt,n(ω)|

≤ ‖g‖1/2
2 ‖Dt,n‖1/2

2 .

SinceDt,n must converge in the mean to zero for allt and‖g‖2 is finite by assumption, the left-hand
side converges to zero for allt.
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Remark.WhenΩ is not of finite measure, many “interesting” kernelsK will not be square-integrable
as specified in the above. Therefore, we must look to subsets having finite measure or which other-
wise have the property that the kernel is square-integrable on them.

Definition. Let T andΩ be as in the lemma. LetQ be a subset ofΩ such thatK(t, ω) is square-
integrable overQ. If supp (g) is contained inQ andf(t) =

∫
Q dµ(ω)K(t, ω)g(ω), thenf is said to

be band-limited with band setQ.

Remark.The most common case isΩ = T = R, with Q = [−W,W ]. In this case we say thatf is
band-limited with band limitW .

11.5. Theorem.Let T and Ω be as in the lemma. Letf be band-limited with band setQ. LetL
be a self-adjoint operator onL2 (supp (g)), and supposeSpec (L) is discrete with all points of finite
multiplicity. Let{φn} be the normalized eigenfunctions forL, and supposeφn(ω) = K(tn, ω) for
some set{tn ∈ T }. Then, withfN(t) defined as above,f(t) = limN→∞ fN(t) for all t.

Proof. {φn} is clearly an orthonormal basis forL2 (supp (g)). By the band-limiting assumption,K
is square-integrable overQ. Therefore the lemma applies directly.

Remark.Now we are in a position to prove the special case sampling theorems discussed above.

11.6. Corollary. Letf be a band-limited function on[0, 1], with band limitM . Lettn = n/(2M+1).
Then the following equality holds pointwise.

f(t) =
1

2M + 1

∑
|n|≤M

f (tn mod 1)
sin((2M + 1)π(t− tn))

sin(π(t− tn))
.

Proof. Let T be the interval[0, 1] and Ω be Z. Let Q be Z2M+1, identified with the finite set
{−M,−(M − 1), . . . ,M − 1,M}, which is the band set for band-limitedf with band limitM .
Let K(t,m) = exp(2πimt) be the kernel of the Fourier transform on[0, 1]. ThenK is continuous
and square-summable onQ for all t. Let L be the left shift operator onQ, with the identification
M + 1 = −M . Then the spectrum ofL is the set{tn = n/(2M + 1) : n ∈ Z}, where each point
has multiplicity one. The normalized eigenfunctions areφn(m) = exp(2πimtn)/

√
(2M + 1), and

φn(m) = K(tn,m). Therefore the lemma applies, the sum which occurs is actually finite, and we
need only computeSn(t). We have

Sn(t) =
∑
|m|≤M

exp(2πim(t− tn))

= cos(2Mπ(t− tn)) + cot(π(t− tn)) sin(2Mπ(t− tn))

=
sin((2M + 1)π(t− tn))

sin(π(t− tn))
.

11.7. Corollary. Letf ∈ L2 (R) be band-limited with band limitW . Then the following holds,

f(t) = lim
N−>∞

∑
|n|≤N

f
( n

2W

)
S(t− n/2W ),

with

S(t) =
sin(2πWt)

2πWt
,
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Proof. Let T andΩ beR. LetQ be the interval[−W,W ]. LetK(t, ω) = exp(2πiωt) be the kernel
of the Fourier transform onR. ThenK is square-integrable overQ. LetL = −id/dω be the shift on
[−W,W ], with the identificationW = −W . The spectrum ofL is the set{tn = n/2W : n ∈ Z}.
The lemma applies, and we computeSn as follows.

Sn(t− tn) =
1

2W

∫ W

−W
dω exp(2πiω(t− tn))

=
sin(2πW (t− tn))

2πW (t− tn)
.

Remark.Clearly a host of such sampling theorems present themselves at this point. The following
is a nice application to Hankel transforms, both on the finite and the infinite domain.

Definition. Let f(t) be inL2 ([0, 1]; tdt). The ν-Hankel transform off is a function defined on
the positive integers,gm =

∫ 1

0
tdt f(t)Jν(jν,mt), m ∈ {1, 2, . . .}. As a simple consequence of this

definition we have

f(t) =
∞∑
m=1

gm
2Jν(jν,mt)

Jν+1(jν,m)2
.

11.8. Corollary. Let f(t), gm be a Hankel transform pair as in the definition. Suppose thatgm is
zero form > M . Thenf(t) is smooth withf(1) = 0 and

f(t) =
M−1∑
k=1

f(jν,k/jν,M )Sk(t),

with

Sk(t) =
2

j2
ν,M

M−1∑
m=1

Jν(jν,kjν,m/jν,M )

|Jν+1(jν,k)|2|Jν+1(jν,m)|2
Jν(tjν,m).

Proof. The smoothness and the propertyf(1) = 0 are obvious from the representation off(t)
as a finite sum over Bessel functions. LetT be the interval, andΩ be {1, 2, . . .}. Let Q be
the finite set{1, 2, . . . ,M}. We must makeQ into a Hilbert space. This we do by choosing a
weight functionµ(m) and takingl2 (Q;µ). The choice we make isµ(m) =

√
2

jν,M
|J ′ν(jν,m)|−2 =

√
2

jν,M
|Jν+1(jν,m)|−2. This is precisely the set of Gaussian quadrature weights for the orthonormal set

φn(m) =
√

2
jν,M

Jν(jν,njν,m/jν,M )

|Jν+1(jν,n)| , n = 1, 2, . . . ,M − 1. This orthonormal set satisfies the condition-
s of theorem, in that it is the restriction of the Hankel transform kernel to the finite set of points
{jν,1/jν,M , . . . , jν,M−1/jν,M}, up to a trivial normalization factor. The self-adjoint operator which is
diagonal in this basis is the coordinate operator itself, with eigenvaluesjν,k/jν,M , k = 1, . . . ,M − 1.
Applying the theorem we get

Sn(t) = (Jν(tjν,·), φn(·))

=
M−1∑
m=1

µ(m)

√
2

jν,M

Jν(jν,njν,m/jν,M )

|Jν+1(jν,n)|2
Jν(tjν,m)

=
2

j2
ν,M

M−1∑
m=1

Jν(jν,njν,m/jν,M )

|Jν+1(jν,m)|2|Jν+1(jν,n)|2
Jν(tjν,m).
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Definition. Let f(t) be inL2 (R; tdt). The Hankel transform off is the functiong(ω) given by
g(ω) =

∫∞
0
tdt Jν(ωt)f(t). Note that the Hankel transform is its own inverse.

11.9. Corollary. Let f(t), g(ω) be a Hankel transform pair. Suppose thatsupp (g) is contained in
[0,W ]. Then

f(t) = lim
N→∞

N∑
n=1

f(jν,n/W )Sn(t),

with

Sn(t) =
2

j2
ν,n − t2W 2

Jν(tW )

Jν+1(jν,n)
.

Proof. Let T andΩ beR. LetQ be the interval[0,W ]. The measure onΩ and thus onQ is ωdω.
Let L be the Bessel differential operator with fixedν on [0,W ] with Dirichlet boundary conditions
g(0) = g(W ) = 0. Then the eigenfunctions areφn(ω) = Jν(tnω) with tn = jν,n/W , n = 1, 2, . . ..
The normalization integral is known,∫ W

0

ωdω |Jν(ωjn/W )|2 =
W 2

2
|Jν+1(jn)|2.

Furthermore we have ∫ 1

0

xdx Jν(αx)Jν(xjν,n) =
Jν(α)Jν+1(jν,n)

j2
ν,n − α2

.

Therefore

Sn(t) =

∫W
0
ωdω Jν(ωt)Jν(ωjν,n/W )∫W

0
ωdω |Jν(ωjν,n/W )|2

=
2

j2
ν,n − t2W 2

Jν(tW )

Jν+1(jν,n)
.

Remark.For a nice discussion of sampling in the general context, see [Kra59].

11.4 Discrete Fourier Transform

Remark.The sampling theorem for the interval[0, 1] can be used to define a discrete version of the
Fourier transform for band-limited functions. The idea is that one should be able to express the
Fourier transform of a band-limited function in terms of the sampled values of the function. This is
an easy computation, given the sampling theorem that we have already proven.
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11.10. Theorem.Letf(t) be a band-limited function on[0, 1] with band limitM . Then we have, for
m = −M, . . . ,M andtn = n/(2M + 1) mod 1,

f̂(m) =
1

2M + 1

∑
|n|≤M

f(tn) exp(−2πimtn).

Proof.

f̂(m) =
1

2M + 1

∑
|n|≤M

f(tn)

∫ 1

0

dt exp(−2πimt)
∑
|k|≤M

exp(2πik(t− tn))

=
1

2M + 1

∑
|n|≤M

∑
|k|≤M

f(tn) exp(−2πiktn)

∫ 1

0

dt exp(2πi(m+ k)t)

=
1

2M + 1

∑
|n|≤M

f(tn) exp(−2πimtn).

Remark.This discrete representation for the Fourier transform of a band-limited function is called
the discrete Fourier transform. Because it can be implemented directly on a computer, it is very often
used. Often it is useful even when the functions of interest are not strictly band-limited; however, one
must then be aware that the discrete transform is now only an approximation to the Fourier transform.
Treating a function which is not band-limited as if it were introduces so-called aliasing errors.

Remark.Perhaps the main reason that the discrete Fourier transform is so important is that there
exists an algorithm for computing it with a number of operations of orderM logM , as opposed
to the naive application of the formula, which would take orderM2 operations. One sophisticated
discussion of the fast Fourier transform is given by Auslander and Tolimieri [AT79].

11.11. Theorem.

Proof.

11.5 Discrete Hankel Transform

11.12. Theorem.Let f(t) be a function on the unit interval[0, 1]. Let gm be the finiteν-Hankel
transform off ,

gm =

∫ 1

0

tdt Jν(jν,mt)f(t),

f(t) =
∞∑
m=1

2Jν(jν,mx)

Jν+1(jν,m)2
gm.

Suppose thatf is band-limited in the sense thatgm = 0,m > M . Then we have

gm =
2

j2
ν,M

M−1∑
k=1

f(
jν,k
jν,M

)
Jν(jν,mjν,k/jν,M )

Jν+1(jν,k)2
.
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Proof. We compute, using the sampling theorem for the finite Hankel transform.

gm =

∫ 1

0

tdt Jν(tjν,m)f(t)

=

∫ 1

0

tdt Jν(tjν,m)
M−1∑
k=1

f(jn/jM)Sk(t)

=
1

j2
ν,M

M−1∑
m=1

f(jν,n/jν,M )
Jν(jν,mjν,k/jν,M )

Jν+1(jν,m)2
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Chapter 12

R

12.1 Representations

Remark.By the general results on abelian groups, we know that all irreducible representations ofR

are one dimensional. The irreducible representations are themselves the characters.

12.1. Lemma. The only continuous solutions of the functional equationf(x + y) = f(x)f(y) are
of the formf(x) = exp ax, a ∈ C.

Proof. First note that any solution to the given functional equation must be infinitely differentiable,
which we prove as follows. Letf(x) be a continuous solution which is not everywhere zero, and
let φ(x) be any infinitely differentiable function with

∫
f(x)φ(x) = c 6= 0. We computef(y)c =

f(y)
∫
f(x)φ(x) =

∫
f(x+y)φ(x) =

∫
f(x)φ(x−y); the right-hand side is infinitely differentiable,

and therefore so is the left-hand side. Therefore we can assume that any continuous solution is
infinitely differentiable. So, using the obvious fact thatf(0) = 1, we take a limit of the functional
equation to obtainf ′(x) = f ′(0)f(x). But the solutions to this equation are given by the one-
parameter familyf(x) = exp ax.

Remark.Given this result, we see that the unitary irreducible representations ofR are given by the
characters{χν(x) = exp(iνx) : ν ∈ R}, and sôR ∼= R.

12.2 Fourier Analysis

Remark.We have previously introduced the classical Fourier transform in the context of harmonic
analysis onRn. From the standpoint of representation theory, the Fourier integral is the explicit
realization of the direct-integral decomposition

L2 (R) ∼=
∫ ⊕

χνdE(ν).

Remark.The following application of harmonic analysis seems at first out of place, but it is actually
an example of a very general circumstance. See [Fur73].
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12.2. Theorem (Central Limit). Let {Xn} be a collection of identical random variables with den-
sity f(x). Without loss, suppose the mean is zero and the standard deviation is one for each. Let
{Yn} be the collection of random variables defined byYn = (X1 + · · ·+Xn)/

√
n. Then

P (a ≤ Yn ≤ b) ∼ (2π)−1/2

∫ b

a

dx exp(−x2/2), n→∞.

Proof. Using the assumption about the mean and the standard deviation of eachXn, we have

f̂(0) = 1,

f̂ ′(0) = 0,

f̂ ′′(0) = −4π2.

Therefore

f̂(s/
√
n) ∼ 1− 2π2s2/n,

f̂(s/
√
n)n ∼ exp(−2π2s2), n→∞.

Recall that the density forYn is given by then-fold convolution of the density forXn/
√
n, and so

this asymptotic result gives the density forYn in the limit. Precisely, letdn be the density forYn, then
for any Schwarz functiong(x) we have

lim
n→∞

∫
dn(x)g(x) dx =

∫
exp(−2π2s2)ĝ(s) ds = (2π)−1/2

∫
exp(−x2/2)g(x) dx.

Then the result follows by the density of Schwarz functions

Remark.The following discussion gives an example of the trace formula for a compact domain. The
result is classical, but the trace formula approach has a wide generalization.

12.3. Theorem (Poisson Summation).Letf(x) be a Schwarz function onRn. Then∑
a∈Zn

f(x+ a) =
∑
a∈Zn

f̂(a) exp(2πia · x).

Proof. Classical: Calculate the Fourier expansion of the left hand side,

f̂(a) =

∫
f(x) exp(−2πia · x)dx

=
∑
b∈Zn

∫
[0,1]n

f(x+ b) exp (−2πia · (x+ b))

=
∑
b∈Zn

∫
[0,1]n

f(x+ b) exp (−2πia · x)

=

∫
[0,1]n

exp (−2πia · x)
∑
b∈Zn

f(x+ b).

To complete the theorem, we need to know that the Fourier series converges everywhere. This follows
from standard results on Fourier series, since the function is smooth and the domain is compact.
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Proof. Trace Formula: Define an integral operator onL2 (Rn/Zn) by

(Lfg)(x) = (f ∗ g)(x), g ∈ L2 (Rn/Zn) .

This is a Hilbert-Schmidt operator defined on a compact domain. Therefore it has a smooth kernel,
given by

Kf (x, y) =
∑
b∈Zn

f(x− y − b),

and its trace is given by

Tr (Lf ) =

∫
Rn/Zn

Kf (x, x)dx =
∑
a∈Zn

f(a).

On the other hand, the eigenvalues ofLf are precisely
{
f̂(b), b ∈ Zn

}
, with eigenvectors{exp(2πib · x)}.

Therefore

Tr (Lf ) =
∑
b∈Zn

f̂(b).

Equating the two expressions gives the result.

Remark.The assumption thatf(x) is a Schwarz function can presumably be weakened. However,
this is apparently not trivial. It is worth noting that there exist examples off ∈ L1 (R) for which the
Poisson summation formula does not hold. See [Kat76, p. 130].



Chapter 13

R
∗

Remark.Let R∗ be the multiplicative group of positive real numbers. This is an abelian Lie group.
Recall that a Haar measure onR∗ is given bydx/x. The characters areχt(x) = xit, t ∈ R. These
results can be obtained most easily by mappingR toR∗ using the logarithm and using the results for
R.

Definition. Let f(x) be a complex-valued function onR∗. Define the Mellin transform off ats ∈ C
to be

(Mf)(s) =

∫
f(x)xs

dx

x
.

Remark.In the case of the real line,R, the set of characters{exp(ikx)} gives a spectral resolution
of the invariant differential operator(d/dx)2. Similarly for R∗, the set of characters{xit}, t ∈ R,
gives a spectral resolution of the invariant operator(x d/dx)2.

Remark.The Mellin transform for real values ofs is related to the Mellin transform for imaginary
values ofs in the same way that the Laplace transform is related to the Fourier transform.
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Affine (R) = R∗ nR

Definition. The group of affine transformations of the real line is given by mapsg(a, b) : x 7→
ax + b; a, b ∈ R, a > 0. This is a nonabelian Lie group. It is an example of a semi-direct product
becauseR∗ has a nontrivial action onR, which is seen in the multiplication lawg(a1, b1)g(a2, b2) =
g(a1a2, a1b2 + b1).

Remark.We have previously displayed the Haar measure(s) onAffine (R). The measuredµR =
da db/a is right-invariant, and the measuredµL = da db/a2 is left-invariant. Affine (R) is not uni-
modular.

Remark.The multiplicative subgroupR∗ of Affine (R) has the representations we have already seen,
with charactersξt(g(a, 0)) = ait. Forν ∈ R these are unitary irreducible representations.

14.1. Lemma. LetH = L2 (R∗, dx/x). Define the following bounded linear maps onC0 (R∗) and
extend to them toH,

ρ+(g(a, b))f(x) = exp(−ibx)f(ax),

ρ−(g(a, b))f(x) = exp(ibx)f(ax).

Thenρ+ andρ− are unitary representations ofAffine (R) onH.

Proof. The invariance of the inner-product is a simple computation. Continuity is obvious.

14.2. Theorem (Gelfand-Naimark). The representationsρ+ andρ− are irreducible, and the repre-
sentationsξt(g(a, 0)) = ait, ρ+, andρ− together exhaust the unitary irreducible representations of
Affine (R).

Proof.
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SO (3)

15.1 Spherical Harmonics

Definition. DefineYlm(θ, φ) = eimφPm
l (cos θ). These functions occur as eigenvectors of the Lapla-

cian on the sphereS2, with eigenvalue−l(l+1), which can be demonstrated by elementary separation
of variables in spherical coordinates.

15.1. Theorem.The finite-dimensional space spanned by the complex-valued functions{Ylm(ω), |m| ≤ l}
admits a linear representation of the groupSO (3),

Ylm(gω) =
∑
|k|≤l

(Al(g))m,k Ylk(ω).

With the obvious inner product this representation is unitary.

Proof. This is a straightforward exercise.

Remark.It is well-known that the spherical harmonics exhaust the irreducible unitary representations
of SO (3). This is proved for instance in Ref. [Vil68]. However, this is not a general result. One
can define representations ofSO (n) on higher-dimensional harmonics with a formula like that of the
above theorem. It turns out that the set of harmonics defined this way do not exhaust the irreducible
representations ofSO (n) if n > 3. This is also proved in Ref. [Vil68]. In fact, forn > 3 the spaces
of harmonics so defined exhaust only the set of representations which have a vector which is fixed
under anSO (n− 1) subgroup.

15.2. Theorem (Addition Formula). Letω1, ω2 ∈ S2. Then∑
m≤l

Ylm(ω1)Ylm(ω2)∗ =
2l + 1

4π
Pl(ω1 · ω2).

Proof. Each side of the equation is invariant upon replacing simultaneouslyω1 7→ gω1 andω2 7→
gω2, whereg ∈ SO (3) acts on the points as usual. (The left-hand side is invariant because the sum
onm makes it a scalar in the representation space.) So the two sides must be proportional since the
scalar representation of the group is one-dimensional. To determine the constant of proportionality,
setω1 = ω2 and integrate both sides overS2.
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15.3. Theorem (Funk-Hecke).Letf : [−1, 1] −→ C be a continuous function. Then∫
S2

f(ω′ · ω)Ylm(ω′) dω′ = 2πYlm(ω)

∫ 1

−1

f(t)Pl(t) dt

Proof. Using the addition formula it is easy to show that∫
S2

Ylm(ω1)Pk(ω1 · ω2) dω1 =
4π

2k + 1
Ylm(ω2)δlk.

Sincef is continuous on the closed interval, it can be uniformly approximated by Legendre polyno-
mialsPl(t). Expandf in this way, and the result follows immediately.



Chapter 16

SU (2)

16.1 Holomorphic Representations

LetEN+1 denote the set of homogeneous polynomials of degreeN in the variablesz1, z2. As we note
elsewhere, this space admits a reprsentation ofSL2 (C). Therefore it also admits a representation of
SU (2). By the general theory, sinceSU (2) is compact, we know that this representation can be
unitarized.

16.2 Characters and Dimensions of Representations

We can use the Weyl character formula and the Weyl dimension formula to obtain information about
the representations ofSU (2). In fact, since these are Lie algebraic results, they apply to any group
of typeA1 in the Dynkin classification.

Recall that dominant integral weights correspond to the finite-dimensional irreducibleg-modules.
These are the representation spaces in which we are interested. ForA1, there is one fundamental
weight, sayw1, and the dominant integral weights are{mw1}, m ∈ Z, m ≥ 0. Consider theg-
moduleL(mw1 + ρ+). The characters of the maximal torusU (1) are exponentials, the Weyl group
is generated by one reflection, and the character of the associated representation is thus given by

χm =
ξm+1
w1

+ (−1)ξ−m−1
w1

ξw1 + (−1)ξ−1
w1

.

The dimension of the representationL(mw1 + ρ+) is

dimL(mw1 + ρ+) = m+ 1.
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Chapter 17

SU (3)

17.1 Dimensions of Representations

Pick a dominant integral weightλ = m1w1 + m2w2. The positive roots ofA2 can be writtenR+ =
{α1, α2, α1 + α2}, andα1, α2 have the same length. Using the explicit form of the Weyl dimension
formula we have

dimL(λ+ ρ+) =
(m1 + 1)(m2 + 1)(m1 +m2 + 2)

2
.

The dimensions are thus{1, 3, 6, 8, 10, 15, 24, 27, . . .}.
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Chapter 18

SL2 (C)

18.1 Introduction

Remark.It is worth pointing out thatSL2 (C) is the double cover of the proper orthochronous Lorentz
group.

18.2 Finite-Dimensional Representations

Recall that a functionp(z) is called homogeneous of degreen if p(λz) = λnp(z) for all λ. Let
EN+1 denote the set of homogeneous polynomials of degreeN in the variablesz1, z2. Note that
dimEN+1 = N + 1, explaining the notation. For such a polynomial, we can write

p(z1, z2) =
N∑
k=0

ckz
k
1z

N−k
2 .

Let s be an element ofSL2 (C)

s =

(
a b
c d

)
,

which we take to act on the two complex-dimensional space of the variablesz1, z2. This defines an
action on the spaceEN+1 by composition,

(ρN(s)p)(z1, z2) = p(s−1(z1, z2) = p(dz1 − cz2,−bz1 + az2).

ClearlyρN(st) = ρN(s)ρN(t) for s, t ∈ SL2 (C).

18.1. Theorem.The set of irreducible finite-dimensional representations ofSL2 (C) is exhausted by
spaces of polynomials as given above.

18.3 Gelfand Method

Remark.A systematic construction of the representations forSL2 (C), and other groups, was ob-
tained by Gelfand and collaborators [GGV66]. The following discussion gives a few of the basic
ingredients in this construction.
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Definition. Supposeκ1, κ2 are two complex numbers such thatκ1 − κ2 ∈ Z. Write χ = (κ1, κ2).
For each suchχ define the vector spaceDχ to be the space of functionsφ : C/{0} −→ C with the
properties

• φ(z, z) ∈ C∞ (C/{0}),

• zκ1−1zκ2−1φ(−z−1,−z−1) ∈ C∞ (C/{0}).

TopologizeDχ by uniform convergence, together with all derivatives, on compact subsets ofC/{0},
makingDχ a locally convex topological vector space.

Definition. Define an action ofSL2 (C) onDχ by

ρχ

(
a b
c d

)
φ(z) = (−bz + d)κ1−1(−bz + d)κ2−1φ

(
az − c
−bz + d

)
.

18.2. Lemma. The above defines a representation ofSL2 (C) onDχ as a locally convex topological
vector space, i.e. is continuous with the given topologies.

Remark.It is sometimes useful to consider another realization ofDχ as a space of functions of the
sphere|ω1|2+|ω2|2 = 1, (ω1, ω2) ∈ C2, given by the identificationf(ω1, ω2) = ωκ1−1

1 ωκ2−1
2 φ(ω1/ω2).

Remark.Whenκ1 andκ2 are both non-negative integers,Dχ has an invariant subspace, the subspace
of polynomialsp(z, z) of order at mostκ1 in z andκ2 in z. This is easy to see from the definition
of the action of the representation. This special case is related to the unitary complementary series,
whereas the generic case gives the unitary principal series. The following gallery of invariant bilinear
functionals illustrates these different cases.

18.3. Theorem.LetDχ andDζ denote representation spaces as above, writingχ = (κ1, κ2). Then
an invariant bilinear functionalB : Dχ ×Dζ −→ C exists in the following cases.

1. ζ = χ, κ1 andκ2 not non-negative integers:B(φ, ψ) = −1
4

∫
dz1dz1dz2dz2(z1−z2)−κ1−1(z1−

z2)−κ2−1φψ,

2. ζ = χ, κ1, κ2 = 0, 1, 2, . . .: B(φ, ψ) = i
2

∫
dzdz

(
∂κ1∂

κ2
φ(z, z)

)
ψ(z, z),

3. ζ = −χ: B(φ, ψ) = i
2

∫
dzdzφ(z, z)ψ(z, z),

4. ζ = (κ1,−κ2), κ1 = 1, 2, . . .: B(φ, ψ) = i
2

∫
dzdz (∂κ1φ(z, z))ψ(z, z),

5. ζ = (−κ1, κ2), κ2 = 1, 2, . . .: B(φ, ψ) = i
2

∫
dzdz

(
∂
κ2
φ(z, z)

)
ψ(z, z).

Remark.The first two cases are related by the following generalized function identity:

lim
κ1,κ2→k1,k2∈Z

(z1 − z)−κ1−1(z1 − z)−κ2−1

Γ(−κ1/2− κ2/2 + |κ1 − κ2|/2)
= δ(k1,k2)(z1−z).
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Remark.Invariant Hermitian functionals onDχ can be constructed from invariant bilinear function-
als in the obvious manner,h(φ, ψ) = B(φ, ψ), whenB is invariant underρχ ⊗ ρχ.

18.4. Theorem. (ρχ, Dχ) admits a positive definite invariant Hermitian functional if and only if one
of the following holds:

• κ1 = −κ2 = 1
2
(k + iv), k ∈ Z: h(φ, ψ) = i

2

∫
dzdz φ(z1, z1)ψ(z2, z2),

• κ1 = κ2 = r ∈ (−1, 1), r 6= 0: h(φ, ψ) = − 1
4Γ(−r)

∫
dz1dz1dz2dz2|z1−z2|−2r−2φ(z1, z1)ψ(z2, z2).

Remark.Completing the first case to a Hilbert space gives the unitary principal series. Completing
the second case to a Hilbert space gives the unitary complementary series.

18.4 Unitary Principal Series

Remark.The above construction leads to the principal and complementary series. Because of the
importance of the unitary principal series, we explicitly state the existence and uniqueness results.
The following form of theSL2 (C) action is equivalent to that given above, in the principal series
case.

Definition. Forf(z) ∈ L2 (C), define the following action onf ,

Pk,iv
(
a b
c d

)
f(z) = | − bz + d|−2−iv

(
−bz + d

| − bz + d|

)−k
f

(
az − c
−bz + d

)
.

This defines a unitary representation ofSL2 (C) onL2 (C), for anyk ∈ Z andv ∈ R.

18.5. Theorem.Pk,iv is an irreducible unitary representation ofSL2 (C). Moreover,Pk,iv is unitar-
ily equivalent toP−k,−iv.

Proof. See [Kna86, p. 33].

18.6. Theorem.The above representations exhaust the unitary principal series forSL2 (C).

18.5 Plancherel Inversion Formula

18.7. Theorem.Let f be a smooth function of compact support onSL2 (C). Then we have the
Plancherel inversion formula,

f(1) =
∞∑

k=−∞

∫ ∞
−∞

dvTr
(
Pk,iv(f)

) (
k2 + v2

)
,

which implicitly defines the Plancherel measure on the spaceZ× R.



Chapter 19

SL2 (R)

19.1 Introduction

19.1. Theorem.Every finite-dimensional unitary representation ofSL2 (R) is trivial.

19.2 Gelfand Method

Remark.Again we consider the method of construction discussed by Gelfand and collaborators
[GGV66].

Definition. Let s ∈ C andε = 0, 1, and writeχ = (s, ε). For each suchχ define the vector space
Dχ of functionsφ : R/{0} −→ C with the properties

• φ(x) ∈ C∞ (R/{0}),

• |x|s−1sgnε(x)φ(−1/x) ∈ C∞ (R/{0}).

TopologizeDχ by uniform convergence, together with all derivatives, on compact subsets ofR/{0},
makingDχ a locally convex topological vector space.

19.2. Lemma. Letφ ∈ Dχ. Then the behaviour ofφ(x) for |x| → ∞ is φ(x) = O (|x|s−1).

Definition. Define an action ofSL2 (R) onDχ by

ρχ

(
a b
c d

)
φ(x) = | − bx+ d|s−1sgnε(−bx+ d)φ

(
ax− c
−bx+ d

)
.

19.3. Lemma. The above defines a representation ofSL2 (R) onDχ as a locally convex topological
vector space, i.e. is continuous with the given topologies.

Remark.If χ is such thatρχφ = (−bx+d)s−1φ
(
ax−c
−bx+d

)
, then the representationρχ is called analytic.

Remark.It is sometimes useful to consider another realization ofDχ as a space of functions on the
circle, given by the identificationf(θ) = | sin θ|s−1sgnε(sin θ)φ(cot θ).
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19.4. Theorem. (ρχ, Dχ) admits a positive definite invariant Hermitian functional if and only if one
of the following holds:

• s = −s = ir, r ∈ R, r 6= 0: h(φ, ψ) =
∫
φ(x)ψ(x)dx,

• |s| < 1, s 6= 0, ε = 0: h(φ, ψ) = σ
∫
|x1 − x2|−s−1φ(x1)ψ(x2)dx1dx2, whereσ = −1 when

s > 0 andσ = 1 otherwise.

Remark.The above theorem shows the existence of the principal and complementary unitary se-
ries. However, in the case ofSL2 (R) further unitary representations exist. These are based on the
existence of proper invariant subspaces ofDχ for certain values ofχ.

Definition. Let s = 0, 1, . . .. Define the operatorsA+, A− as follows, whenφ(x) is sufficiently
smooth.

A+φ(x) = φ
(s)
+ (x) =

1

2πi

∫ ∞
−∞

φ(s)(x′)dx′

x′ − x− i0
,

A−φ(x) = φ
(s)
− (x) =

1

2πi

∫ ∞
−∞

φ(s)(x′)dx′

x′ − x+ i0
.

19.5. Lemma. Lets = 0, 1, . . . andA+, A− be as above. Let(·, ·) be the standardL2 inner-product.
Then the following define independent invariant Hermitian functionals (possibly degenerate) onDχ.

(φ, ψ)+ = i−s (A+φ, ψ) ,

(φ, ψ)+ = is (A−φ, ψ) .

19.6. Lemma. Let ρχ, Dχ be an analytic representation, sos = 0, 1, . . . and ε is adjusted accord-
ingly. LetD−s ⊂ Dχ be the nullspace for(·, ·)+ andD+

s ⊂ Dχ be the nullspace for(·, ·)−. Let
Es ⊂ Dχ be the subspace of polynomials of order at mosts− 1. Then

• D+
s andD−s are proper invariant subspaces ofDχ,

• D+
s ∩D−s = Es,

• Dχ/Es = D+
s /Es ⊕D−s /Es,

• The invariant hermitian functionals given above are nondegenerate and positive-definite on the
respective spaces, so thatF+ ≡ A+(D+

s /Es)
∼= D+

s /Es andF− ≡ A−(D−s /Es)
∼= D−s /Es.

Remark.The spacesF+ andF− have equivalent representations as spaces of functions holomorphic
in the upper half-plane and lower half-plane repsectively.
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19.3 Unitary Principal Series

19.7. Theorem.For f(x) ∈ L2 (R), define the following actions onf ,

P±,iv
(
a b
c d

)
f(x) = σ(±)| − bx+ d|−1−ivf

(
ax− c
−bx+ d

)
,

σ(s) =

{
1 s = +,

sgn(−bx+ d) s = −.

These define unitary representations ofSL2 (R) onL2 (R), for anyv ∈ R.

19.8. Theorem.The above representations exhaust the unitary principal series forSL2 (R).

19.4 Unitary Discrete Series

Definition. LetD+
n , n ≥ 2, be the Hilbert space of holomorphic functions on the upper half-plane,

with the norm

‖f‖2 =

∫∫
y>0

|f(z)|2yn−2dxdy.

19.9. Theorem.For f(z) ∈ D+
n , define the following actions onf ,

D±,n
(
a b
c d

)
f(x) = σ(±) ◦ (−bx+ d)−nf

(
ax− c
−bx+ d

)
,

whereσ(+) is the identity map andσ(−) is complex conjugation. These define unitary representa-
tions ofSL2 (R) onD+

n , for anyn ≥ 2.

Proof. See [Kna86, p. 35].

19.10. Theorem.The above representations exhaust the unitary discrete series forSL2 (R).

19.5 Plancherel Inversion Formula

19.11. Theorem.Let f be a smooth function of compact support onSL2 (R). Then we have the
Plancherel inversion formula,

f(1) =

∫ ∞
−∞

dvTr
(
P+,iv(f)

)
v tanh(πv/2)

+

∫ ∞
−∞

dvTr
(
P−,iv(f)

)
v coth(πv/2)

+
∞∑
k=2

4(k − 1)Tr
(
D+,k(f) +D−,k(f)

)
.

which implicitly defines the Plancherel measure on the spaceZ× R ∪ Z+.
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19.6 Curious Topology for Lattice Spaces

Consider lattices inR2; recall that such lattices are by definition subgroups ofR
2 isomorphic toZ×Z

generated by two linearly independent basis vectors. First note thatGL2 (R)/GL2 (Z) is equivalent
to the space of lattices inR2, and similarlySL2 (R)/SL2 (Z) is equivalent to the space of lattices in
R

2 satisfying the condition that each unit cell has unit area. The topology of these spaces is known.

19.12. Theorem.The spaces of lattices in the plane have the following topologies.

1. SL2 (R)/SL2 (Z) is homeomorphic to the complement of a trefoil knot inR3.

2. GL2 (R)/GL2 (Z) is homeomorphic to the space of unordered triples of points inR
2 with fixed

center of mass.

Proof. See [Mil71, p. 84].



Chapter 20

Heisenberg Group

Definition. LetN be the group of3×3 upper-triangular matrices with real entries and with diagonal
entries all equal to 1,

N =


1 a c

0 1 b
0 0 1

 : a, b, c ∈ R

 .

LetZ be the normal subgroup ofN consisting of matrices of the form

Z =


1 0 n

0 1 0
0 0 1

 : n ∈ Z

 .

Define the Heisenberg group to be the groupN/Z.

20.1. Theorem.The Heisenberg groupH is not a matrix group.

Proof. Follows [Seg95]. LetT be the circle subgroup ofH given by matrices of the form

T =

gt =

1 0 t
0 1 0
0 0 1

 : t ∈ R

 .

Suppose that we have a representationρ, V ofH on some finite-dimensional vector spaceV . Decom-
pose this representation under the action ofT , into irreducible subrepresentationsρn, Vn. EachVn is
an invariant subspace under the action ofH, sinceT is in the center ofH. Explicitly, gt acts onVn
by multiplication by a phasee−2πint. But eachgt can be written in the formgt = uvu−1v−1 for some
u, v ∈ H; thereforeρ(gt) must act as multiplication by 1, since it has determinant 1. This means that
onlyn = 0 can appear in the decomposition ofV . ThereforeT acts trivially onV . But thenρ cannot
be injective. Therefore no finite-dimensionalρ, V can provide a faithful representation.

Remark.Roughly speaking, there is a circle group insideH which is invisible from the standpoint
of finite-dimensional representations.

Remark.H is a central extension ofR2 by the circle group,

0→ T → H → R
2 → 0.
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Write the elements ofH in the formu exp(ξ) with u ∈ T andξ ∈ R2. LetS(ξ, η) be the skew form
ξ1η2 − ξ2η1 onR2. Then the group law is

u exp(ξ) v exp(η) = uv exp(iS(ξ, η)) exp(ξ + η).

20.2. Theorem.The unique faithful representation ofH is the standard one of quantum mechanics,
on the spaceL2 (R), generated by the one-parameter groups,

eiaP , eibQ, e2πit,

where

Q = x·, P = −i d
dx
.

Proof. This is the Stone von-Neumann theorem. It is not difficult to prove. See my notes onC∗

algebras.

Remark.Pick a complex structure onR2 compatible with the skew formS defined above. Thus
identifyR2 with C. If we define

a =
1√
2

(P + iQ), a† =
1√
2

(P − iQ),

then, on a common domain forP andQ we have
[
a†, a

]
= 1. It can be seen easily thata† annihilates

the unique vectorΩ = exp(−1
2
x2) and that the set{anΩ, n ≥ 0} provides an orthonormal basis for

H = L2 (R). Considering scalar multiples of these basis elements, we see thatH has a dense sub-
space isomorphic to the symmetric algebraSym (C). Thinking ofH as the completion ofSym (C),
we call it the oscillator representation.

Remark.The three self-adjoint operators{
1

2
P 2,

i

2
(PQ+QP ),

1

2
Q2

}
,

share the common dense domain identified withSym (C) above. On this domain they satisfy the
commutation relations ofsl2 (R). The one-parameter unitary groups associated to these operators
generate a group which is a double cover ofSL2 (R), which is called the metaplectic groupMpl2 (R).

Remark.As pointed out by Segal [Seg95, p. 102], this seems related to the following situation.
Consider the space of spherically symmetric functions onR

n, and consider the operators on such
functions,

{e, h, f} =

{
1

2
4, r ∂

∂r
+ n/2,

1

2
r2

}
.

These satisfy the relations ofsl2 (R),

[h, e] = −2e, [h, f ] = 2f, [e, f ] = h.

But these representations of the Lie algebrasl2 (R) on spaces of spherically symmetric functions do
not correspond to any representation ofSL2 (R), and they have no apparent geometric interpretation.
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Remark.Define the operatorA = a†a + 1/2 = 1
2
(P 2 + Q2). This self-adjoint operator generates

the circle group inSL2 (R). In quantum mechanicsa†a is called the number operator, andA is the
Hamiltonian of the harmonic oscillator. See [GS93, p. 75].

Remark.It is worth thinking about the physical connection here, because the appearance of the
harmonic oscillator needs to be understood. We began with kinematic information, in the form
of the quantum algebra of observables generated fromP andQ. The associated group contains a
circle group which is invisible to finite-dimensional representations, but which controls the phase
information in the (necessarily infinite-dimensional) quantum Hilbert space. All this information
is purely kinematical, in the sense that it applies equally well to any quantum mechanical system.
Suppose now that wedefinethe time-evolution of the system to be the automorphism generated by
the action of this circle group; then we have the system which we call the harmonic oscillator. The
harmonic oscillator is special precisely because it is the system with dynamics defined in terms of
this kinematic information, and this is precisely why it is exactly soluble; the harmonic oscillator is
purely representation theoretic.

Remark.One might ask about other exactly soluble quantum mechanical systems, specifically the
hydrogen atom. Can the exact solution of the hydrogen atom be understood group-theoretically? It
turns out that it can, and indeedSL2 (R) appears again.

Definition. Define the Schroedinger representation of the Heisenberg group by

ρ(p, q, t) = exp(2πit) exp (2πi(qP + pQ)) ,

≡ ρ(p, q) exp(2πit),

acting on functions inL2 (R).

Definition. Define the Wigner transform as the mapV : L2 (R)⊗ L2 (R) −→ L2 (R2)

V (f, g)(p, q) =

∫
dy exp(2πipy)f

(
y +

1

2
q

)
g

(
y − 1

2
q

)
.

Definition. Let φ0 =
√

2 exp(−πx2). Define the Bargmann transform to be the linear mapB :
L2 (R) −→ L2 (C− {0}; exp(−π|z|2)dzdz̄),

(Bf)(z) = exp
(π

2
|z|2
)
V (f, φ0)

=

∫
dx f(x)

√
2 exp

(
2πxz − πx2 − π

2
|z|2
)
.

The integral kernel is called the Bargmann kernel. The spaceF ⊂ L2
(
C− 0; e−π|z|

2
dzdz̄

)
given

by

F =

{
f(z) : f(z) entire,

∫
f(z)e−π|z|

2

dzdz̄ <∞
}
,

is called the Fock space. The composition of the Bargmann map and the Schroedinger representa-
tion gives a representation of the Heisenberg group onF called the Bargmann representation; the
Bargmann map is a unitary equivalence. See [Fol87].
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20.3. Theorem (Groenewald).LetPk be the space of real polynomials of degree less than or equal
to k onR2n. Then there does not exist a linear mapR : P4 −→ B(S(Rn)) with the properties

1. R(ξj) = Dj,

2. R(xj) = Xj,

3. R({A,B}) = 2πi [R(A), R(B)] for all A,B ∈ P3.

Proof. This is a simple calculation. For such a map we haveR(ξ2x2) = 1
9
R({ξ3, x3}) = 2πi

9
[D3, X3].

AlsoR(ξ2x2) = 1
3
R({ξ2x, ξ2x}) = πi

6
[D2X + XD2, X2D + DX2]. But these are contradictory, as

can be seen by applying each operator to the functionf(x) = 1.

Remark.This theorem shows that quantization is not a simple functorial operation on the Poisson
structure of classical mechanics. The algebra of local flows, generated by such polynomial functions
as appear in the theorem, cannot simply be transferred to an operator algebra in the quantum theory.
However, it could be argued that this is too much to ask. Perhaps one should not consider all the
local one-parameter flows, but only those which are actually global flows. In fact this case is also
impossible.

20.4. Theorem (van Hove).The conclusions of the Groenewald theorem remain true as well if poly-
nomials are replaced everywhere by smooth functions generating global one-parameter flows.

Proof. See [Got80] and [Fol87, p. 197] for discussion.



Chapter 21

Integrating Class Functions

Segal gives an exposition of the nice result for calculating the integral of a class function over the
groupU (n) [Seg95, p. 86]. Recall that a class function is a functionf on a groupG satisfying
f(hgh−1) = f(g) for all h, g ∈ G.

21.1. Theorem.Letf : U (n) −→ C be a class function. Then we have∫
U(n)

f =
1

(2π)nn!

∫ 2π

0

· · ·
∫ 2π

0

f
(
diag(eiθ1 , . . . , eiθn)

)∏
i<j

|eiθi − eiθj |2 dθ1 . . . dθn.

Proof. Let T be the maximal torus ofG = U (n), consisting of digaonal matrices. For any function
f onG, we have ∫

G

f =
1

n!

∫
T×G/T

f(gtg−1)J(t) dt d(gT ),

whereJ(t) is the Jacobian of the mapT ×G/T → G given by(t, gT ) 7→ gtg−1. Whenf is a class
function this gives ∫

G

f = K−1

∫
T

f(t)J(t)dt,

whereK−1 = vol(G/T )/n!. Now, J(t) = det (Ad (t−1)− 1), whereAd (·) is the adjoint ac-
tion on t⊥. The eigenvalues ofAd (t−1) are of the formei(θk−θj), with eigenvectors given by the
matricesEjk which have all entries vanishing except the(j, k) entry which is equal to unity. So
J(t) =

∏
j 6=k(e

i(θk−θj) − 1) =
∏

j<k |eiθk − eiθj |2. Finally, we determine the constantK =∫
T
J(t) dt. Note thatJ(t) is equal to the square of the Vandermonde determinant, which is given

by ∆(t) =
∑
±eim1θ1 · · · eimnθn , where the sum runs over all(m1, . . . ,mn) equal to the permuta-

tions of(0, . . . , n − 1). There are(n!)2 terms in the square, and they can be integrated each in turn,
givingK = (2π)nn!.

Remark.Almost the same calculation gives a similar result for any compact Lie groupG with max-
imal torusT . The Jacobian in this case is equal to|∆+|2, where∆+ is the Weyl denominator (the
denominator of the Weyl character formula). Notice that the Vandermonde determinant is the Weyl
denominator for the groupU (n).
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